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Strong regulatory actions are needed to combat climate change, but climate policy
uncertainty makes it difficult for investors to quantify the impact of future climate regulation.
‘We show that such uncertainty is priced in the option market. The cost of option protection
against downside tail risks is larger for firms with more carbon-intense business models. For
carbon-intense firms, the cost of protection against downside tail risk is magnified at times
when the public’s attention to climate change spikes, and it decreased after the election of
climate change skeptic President Trump. (JEL G13, G32, Q54)
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Scientists broadly agree that strong regulatory actions are needed to avoid the
potentially catastrophic consequences of climate change.! Climate change is
mostly caused by the combustion of fossil fuels, so any regulation will have to
aim at significantly curbing firms’ carbon emissions. However, whether, how,
and when regulatory climate policies will be implemented is highly uncertain.
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The Intergovernmental Panel on Climate Change (IPCC 2018) summarizes the current scientific consensus about
climate change. The IPCC is the United Nations’ intergovernmental body for providing scientific evidence related
to climate change.

The Review of Financial Studies 34 (2021) 1540-1571

© The Author(s) 2020. Published by Oxford University Press on behalf of The Society for Financial Studies.
All rights reserved. For permissions, please e-mail: journals.permissions @oup.com.

doi:10.1093/rfs/hhaa071 Advance Access publication June 27, 2020

GZ0Z UOIBIN 61 UO Josn sonsiels [eonewsyielN A 80985/07S L/€/7E/0101ME/SH/W00 dno lWapese//:Sd)y Wolj PaPeojumod


https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhaa071#supplementary-data

Carbon Tail Risk

Regulation to limit carbon emissions could be enforced via carbon taxes, cap-
and-trade schemes, or emission limits, all of which have different impacts on
firms. Even in the case of carbon taxes, it is highly uncertain what the price for
carbon emissions should be (it ranges between $15 and $360 per ton of CO,,
depending on the model) (Financial Times 2019). Climate policy uncertainty
is further amplified because of fundamental uncertainty about how strongly
emissions have to be reduced to limit global warming (see Barnett, Brock, and
Hansen 2020).

Climate policy uncertainty has heterogeneous effects across firms in the
economy. Uncertainty is likely to be most relevant for carbon-intense firms, as
such firms will be most affected by policies that aim at curbing emissions. For
such firms, regulation that limits carbon emissions can lead to stranded assets or
a large increase in the cost of doing business (Litterman 2016). Carbon-intense
firms may also experience financing constraints if banks reduce funding because
of climate-related capital requirements. Yet the extent to which carbon-intense
firms will be affected by regulation is highly uncertain. This uncertainty makes
it difficult for investors to quantify the impact that future climate regulation
will have on firms in terms of large drops in stock prices or general increases
in volatility.

In this paper, we test whether climate policy uncertainty is priced in the
option market.” Specifically, we explore whether the cost of option protection
against downside tail risks is larger for firms with more carbon-intense business
models. We also explore whether the cost of option protection against increases
in return volatility (variance risk) is larger for more carbon-intense firms.
Our analysis builds on prior work documenting that political or regulatory
uncertainty is priced in the option market. Notably, Kelly, Pastor, and Veronesi
(2016, KPV hereafter) show that options which provide insurance against tail
and variance risks are more expensive when general political uncertainty is
higher. The benefit of using options-based measures is that these measures
reflect forward-looking expectations of subjective or perceived risk.

Pastor and Veronesi (2013, PV hereafter) provide a theoretical framework
that helps us explain why political uncertainty about climate regulation
(“climate policy uncertainty”’) may affect asset prices. In their model, the
government decides whether to change its current policy. Potential new policies
are heterogeneous ex ante; that is, agents expect different policies to affect
firms in unique ways and with varying degrees of uncertainty. The government
decides on adopting a new policy based on investors’ welfare and political
costs. A new policy is more likely to be adopted if its positive impact on
firms’ profitability is higher and if the political costs associated with it are

In this paper, the term “priced” means that option prices reflect that certain stocks are riskier than others, rather
than that the market compensates investors for taking a certain risk by offering an expected return. Likewise,
“uncertainty” is not to be understood strictly in the Knightian sense of the word. This wording follows the
meaning used in the related literature (Pastor and Veronesi 2013; Kelly, Pastor, and Veronesi 2016).
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lower. While investors can only start learning about policy impacts when a new
policy is adopted, “political signals” allow them to learn about political costs
before the adoption of a new policy. Asset prices are affected by shocks that
originate from learning about the political costs of the new policies: as new
shocks occur, investors change their beliefs about expected future policies.
PV show that political uncertainty leads investors to demand compensation
for political events (debates, negotiations, or elections) as such events affect
beliefs about future policies. Hence, investors’ expectations about future policy
changes affect asset prices. A cross-sectional implication of PV’s model is that
the cost of protection against downside tail and variance risks associated with
climate policy events depends on the sensitivity of firms to potential climate
regulation.

Our analysis uses three option market measures for firms in the S&P 500
as well as for the economic sectors of the index. Our focal measure, SlopeD,
originates from KPV and identifies downside tail risk. The measure reflects
the steepness of the implied volatility slope, and it is created as the slope of a
function that relates left-tail implied volatility to moneyness (with moneyness
being measured by the option’s delta). The measure is on average positive,
because far out-of-the money (OTM) puts are typically more expensive (in
terms of implied volatilities) than puts that are less OTM. An increase in SlopeD
indicates that deeper OTM puts become more expensive, which reflects a
relatively higher cost of protection against downside tail risks. SlopeD measures
the properties of the risk-neutral probability distribution implied by option
prices, and, hence, takes into account both the physical distribution of a stock’s
returns and an adjustment for the risk premium associated with the stock’s risk.3

Our other two measures provide complimentary information from the option
market. The model-free implied skewness (MFIS) quantifies the asymmetry of
the risk-neutral distribution (Bakshi, Kapadia, and Madan 2003). By being the
third central moment of the distribution normalized by the risk-neutral variance
(raised to the power of 3/2), MFIS reflects the expensiveness of protection
against left tail events relative to the cost of exposure to right tail events. The
variance risk premium (VRP) allows us to evaluate the cost of protection against
general variance risk, and it is computed as the difference between the risk-
neutral expected and the realized variances (Carr and Wu 2009; Bollerslev,
Tauchen, and Zhou 2009).

We focus on measures constructed from options with 30 days to maturity.
Short-term options are traded more frequently and with lower effective
transaction costs compared to long-term derivatives. Hence, their prices adjust
faster to investors’ flow of information as well as to changes in perceived

‘We follow the literature in using risk-neutral quantities as risk measure proxies. The benefit of option-implied
variables compared to equivalents under the physical probability measure is their forward-looking character,
while the cost includes a potential bias stemming from the risk premium effect (for discussions of related issues,
see, e.g., Chang, Christoffersen, and Jacobs 2013; Cremers, Halling, and Weinbaum 2015; DeMiguel et al. 2013).
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uncertainty and risks.* Further, we aim to identify the cost of protection against
large price drops, and such tail events have the most pronounced pricing effects
for short-term options (Cont and Tankov 2004).

Our data on carbon emissions are collected by means of a survey by CDP,
formerly known as the Carbon Disclosure Project. We focus on Scope 1
emissions, which originate from the combustion of fossil fuels or from releases
during manufacturing. We scale carbon emissions by firms’ equity market
values to obtain a measure of carbon intensity. We perform this scaling as the
impact of the costs of future climate regulation should be considered relative to
market values; for a given amount of emissions, firms with high equity market
values are likely to suffer less from regulation than firms with low market
values. Our main measure is a firm’s industry carbon intensity, that is, Scope 1
emissions of all reporting firms in the industry divided by the market value of
all reporting firms in the industry. We use this measure as carbon intensities are
primarily driven by industry characteristics (as we will show). Recent evidence
also indicates that industry characteristics drive the effect of Scope 1 intensities
on returns and investor screening (Bolton and Kacperczyk 2020).> We use a
selection model as firms disclose emissions voluntarily to CDP.

We find strong evidence that climate policy uncertainty is priced in the
option market. A one-standard-deviation increase in a firm’s log industry carbon
intensity increases the implied volatility slope (SlopeD) by 0.014, or by 10% of
the variable’s standard deviation. We confirm our finding for sector exchange-
traded fund (ETF) options: the cost of option protection against downside tail
risks is higher for the more carbon-intense sectors of the S&P 500. These results
are highly robust. For example, they are unaffected if we drop oil and gas firms
(our regressions already control for oil betas), and we continue to find effects for
option maturities of up to one year. Overall, our estimates suggest that options
written on carbon-intense firms are relatively more expensive, especially for
the far-left tail region, as they provide protection against downside tail risks
associated with climate policy uncertainty.

Evidence for the two other measures is more mixed, but it complements the
picture presented by SlopeD. While we find some effects for MFIS at the sector
level, we cannot detect corresponding effects at the firm level. These weaker
results reflect that MFIS, different from SlopeD, does not directly capture left
tail risk. Instead, it measures distribution asymmetry by comparing left and
right tail risk, with the latter, as we show, also being higher for carbon-intense
firms. For VRP, we find effects at the firm level, but not at the sector level.

For example, Muravyev and Pearson (2020) document that investors trade options on S&P 500 constituents with
time to maturity less than 3 months 30% more often (in terms of stock-days) than options with maturities between
3 and 12 months. The bid-ask spreads, adjusted for execution timing based on a high-frequency trade analysis,
are on average about 50% higher for longer-term options than for shorter-term ones.

Bolton and Kacperczyk (2020) explain their finding with Gennaioli and Shleifer’s (2010) local thinking
hypothesis, whereby investors use a coarse categorization of firms within a given industry when evaluating
carbon risks.
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Hence, our results for all three measures combined indicate that higher climate
policy uncertainty increases at the firm level the likelihood of left and right tail
events, and it has some effect on firm-level uncertainty as measured by VRP.
On the sector level, however, where firm-specific risks are partially diversified
away,® we observe that the effect is more systematic and concentrated in the
left tail.

In a next step, we investigate whether the effect of carbon intensities on
downside tail risk is amplified at times when public attention to climate change
is high. Our assumption is that high public attention to global warming increases
the probability that pro-climate policies are adopted.” Importantly, as the
probability of a policy change rises, so does uncertainty about which specific
new policies will be selected and what their impact on firm profitability will be.
While this implies more certainty that a regulatory change occurs, pro-climate
policies are characterized by large uncertainties in terms of their impact on firm
profitability as such policies represent larger deviations from current practices.
The cost of option protection against downside tail risk should therefore be
magnified at times when public attention to climate change spikes. To obtain
proxies for attention to climate change, we use the negative climate change news
index developed by Engle et al. (2020) as well as Google search volume data for
the topic “climate change”. While we find that the effect of carbon intensities
on SlopeD is aggravated when there is more negative climate change news, we
cannot detect a corresponding effect for Google search data.®

Finally, we use the election of President Trump in 2016 as a shock that
reduced climate policy uncertainty in the short term. Advantages of the
election are that its outcome was unexpected to the market and that it featured
two candidates with opposing views on climate regulation. While President
Trump signaled in his campaigns that prevailing climate policies would not
become stricter, Hillary Clinton, to the contrary, promised pro-climate policies.
Hence, President Trump’s election meant little change in the status quo of
U.S. climate regulation, whereas Clinton’s election would have implied the
opposite if she were elected.’ The cost of insurance against downside tail risks

Full diversification is unlikely for sectors with a low number of constituents and for sectors with a skewed
distribution of value weights.

In the PV model, the probability of the adoption of new policies increases (a) when the impact of the current
policy is harmful to firm profitability and (b) when political costs associated with new policies are low. We are
agnostic about which of these components drives our assumption. Public attention on climate change is often
increased after natural disasters and climate summits or political events related to climate change. The former
likely reveals inadequacy of current climate policies and, thereby, their harmful impact, whereas the latter likely
reduces political costs of adopting pro-climate policies.

An explanation for the difference in results may be that the Engle et al. (2020) index captures downside aspects
associated with climate change more directly, as it focuses on negative news.

No or little change in the status quo under President Trump was likely, especially when compared to Clinton’s
plans, even though he campaigned on withdrawing from the Paris Agreement. However, as the Paris Agreement
did not have any in-built enforcement mechanisms and U.S. climate regulation had been lenient prior to his
election, the expected uncertainty of the set of potential new policies under a regime of President Trump should
still be lower than that under a Clinton regime.
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associated with climate policy uncertainty should therefore have declined after
President Trump’s election, especially for carbon-intense firms. Supporting
this prediction, SlopeD for highly carbon-intense firms decreased by 0.025
after President Trump’s election, relative to less carbon-intense firms, a decline
equal to 12% of the variable’s standard deviation during the event window. We
find similar effects for sector options.

Our findings contribute to two strands of literature. The first strand documents
that regulatory or political uncertainty affects asset prices. As mentioned, KPV
is most closely related to us as they show that options are more expensive if
they provide protection against risks associated with political events. Consistent
with their model, PV find that stocks are more volatile and command a
higher risk premium when political uncertainty is higher, measured using the
Baker, Bloom, and Davis (2016) index. Similar evidence is provided by
Brogaard and Detzel (2015). Brogaard et al. (2020) find that higher global
political uncertainty is associated with lower equity returns and higher volatili-
ties around the world. Related evidence from the healthcare market comes from
Koijen, Philipson, and Uhlig (2016), who show theoretically and empirically
that political uncertainty related to medical approval regulation and
reimbursement policies affects the profit risk of healthcare firms. As a result,
healthcare firms need to compensate investors with a risk premium. Using data
on U.S. healthcare firms, they document a 4%—6% annual medical innovation
premium, which reflects investor uncertainty about healthcare regulation.

Only a few papers in finance study climate policy uncertainty. Barnett (2019)
shows that climate policies that restrict oil use can generate a run on oil, whereby
oil firms accelerate extraction. This leads to a decrease in the oil price and
the value of oil firms. He also shows that firms with high climate policy risk
benefited from President Trump’s election. Similarly, Ramelli et al. (2020)
show that stock prices of carbon-intensive firms positively reacted to President
Trump’s election. Delis, de Greiff, and Ongena (2020) find that climate policy
uncertainty started to be priced into syndicated loans, especially among fossil
fuel firms. Engle et al. (2020) develop a dynamic strategy that hedges news
about climate change, and Barnett, Brock, and Hansen (2020) provide a
decision theory framework to address how climate uncertainty affects asset
prices.

The second strand examines the effects of climate change on asset prices.
Hong, Li, and Xu (2019) find that stock prices of food companies do not
fully reflect climate risks. Bolton and Kacperczyk (2020) document that
firms with higher carbon intensities earn a carbon premium. This finding
is similar to Hsu, Li, and Tsou (2020), who find that firms that generate
many toxic chemical emissions earn higher returns. Gorgen et al. (2020)
create a carbon factor to capture firms’ sensitivity to the transition to a low-
carbon economy. Matsumura, Prakash, and Vera-Munoz (2014) find that higher
emissions are associated with lower firm values. Similarly, Berkman, Jona,
and Soderstrom (2019) use a firm-specific climate risk measure that they
find is negatively related to firm value. Using aggregate market outcomes,
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De Haas and Popov (2019) show that more equity-funded markets have lower
per capita emissions, as stock markets seem to reallocate investment toward
more carbon-efficient sectors. Bansal, Kiku, and Ochoa (2017) show that
equity portfolios have negative exposure to long-run temperature fluctuations,
and Daniel, Litterman, and Wagner (2016) calibrate the price of climate risk.
Giglio et al. (2018) study long-term discount rates to evaluate climate change
mitigation policies. Although most of these studies concentrate on underlying
price effects and risk premiums, we analyze whether the cost of protection
against climate policy uncertainty is priced in the option market.

1. Hypotheses Development

Our hypotheses development is guided by PV, who provide a framework to
explain why political uncertainty affects asset prices. Asset prices in their
model are affected by political shocks, which are due to investors learning
about the political costs associated with new policies. As these costs are
uncertain, investors are unable to predict which policies will be chosen, and
investors change their beliefs once political shocks arise. Hsu, Li, and Tsou
(2020) build on PV to analyze how firms with toxic emissions are affected by
political uncertainty. In their model, the government learns about the welfare
costs of toxic emissions and decides between strong and weak regulatory
regimes. Strong regulation has a more negative effect on the profitability of
emission-intense firms, and, as a result, these firms face larger risks.

Our hypotheses are related to these papers because global warming generates
large climate policy uncertainty for carbon-intense firms. (We consider climate
policy uncertainty to be a specific form of political uncertainty.) As global
warming is primarily caused by the combustion of fossil fuels, regulation
must be aimed at significantly reducing carbon emissions. Importantly, it
remains highly uncertain whether, how, and when such regulation would be
implemented. How firm profitability would be affected by any new policies
is also highly unclear. Climate policy uncertainty matters most for carbon-
intense firms, as these firms are the most directly affected by policy instruments
that curb emissions, such as emission limits, cap-and-trade schemes, or
carbon taxes. These instruments would likely reduce future cash flows of
carbon-intense firms and may depress their valuations as a result.

In summary, climate policy uncertainty makes it difficult for investors to
quantify the impact of future climate regulation on carbon-intense firms, in
terms of both large stock price drops and general increases in return volatility.
Hence, the cost of option protection against downside tail and variance risks
associated with climate policy uncertainty should be larger for such firms:

Hypothesis 1. The cost of option protection against downside tail and

variance risks associated with climate policy uncertainty is higher at carbon-
intense firms.
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High public attention to global warming, which may be the result of climate-
related natural disasters or political summits on climate change, should make
new pro-climate policies and their adoption more likely. New pro-climate
regulations can take many different forms with varying levels of severity (as
modelled in PV), and this heterogeneity generates policy uncertainty.' As the
probability of a policy change rises, so does the political uncertainty about
which new policies will be adopted and their impact on firm profitability. The
cost of protection against downside tail risks associated with climate policy
uncertainty therefore should be magnified at such times. This leads to the
following hypothesis:

Hypothesis 2. The cost of option protection against downside tail risks
associated with climate policy uncertainty increases at times when public
attention to climate change is higher.

Finally, we exploit President Trump’s election in 2016 as a shock that
reduced climate policy uncertainty in the short term. The advantage of the
2016 presidential election is that it featured two candidates with opposing
views on climate change. While Hillary Clinton supported new pro-climate
policies, President Trump signaled that prevailing climate policies were likely
to stay. He dubbed climate change “a hoax” and tweeted that “the concept
of global warming was created by and for the Chinese in order to make U.S.
manufacturing non-competitive” (Trump 2012). His stance can be interpreted
as a desire to keep the lenient status quo intact, whereas Clinton’s position was
more radical with a desire to make forward progress in pro-climate regulation.
Therefore, the set of climate policies likely to be adopted under President
Trump should have a lower variance compared to that under Clinton. Hence,
his unexpected election should have reduced uncertainty about which climate
policies will be adopted after Election Day.!! This should reduce the cost of
insurance against downside tail risks associated with climate policy uncertainty
at carbon-intense firms. This leads to the following hypothesis:

Hypothesis 3. The cost of option protection against downside tail risks
associated with climate policy uncertainty declined after the election of
President Trump in 2016 at carbon-intense firms.

Pastor and Veronesi (2012) formally model impact uncertainty. Pastor and Veronesi (2012) differs from PV’s
model in a way that has implications for our hypotheses. Pastor and Veronesi (2012) assume that prior beliefs
about the impacts of potential policies are identical. In contrast, PV allow the impacts and uncertainties to vary
across potential policies. It is these a priori heterogeneous beliefs about potential policies in PV that induce an
endogenous increase in political uncertainty as the probability of a policy change rises. In a limiting case in
which the probability of policy change goes to zero, there is no political uncertainty since the status quo is sure
to remain.

An advantage to the analysis of President Trump’s election is that his victory was largely unexpected by the
market. On Election Day morning, online gambling company Betfair put the probability of a victory by President
Trump at 17% (Wagner, Zeckhauser, and Ziegler 2018). President Trump also lost the popular vote by almost 3
million votes.
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Data

2.1 Carbon emissions
2.1.1 Data source. We collect data on carbon emissions from CDP, formerly
known as the Carbon Disclosure Project. The data are collected by CDP
on behalf of institutional investors representing over $87tr in assets under
management in 2018.12 Firms submit their data to CDP at the end of June,
covering emissions of the prior calendar year (the deadline was changed to
mid-August for 2018 submissions). CDP then releases these data by the end of
October. We examine emissions generated between 2009 and 2016. We focus
on S&P 500 firms because CDP primarily covers these firms for its U.S. survey.
Figure 1 shows that participation in the CDP survey among S&P 500 firms has
increased over time, in terms of the number of reporting firms (Figure 1, panel
A) and as a fraction of the S&P 500 market capitalization (Figure 1, panel B).
The data include information on three types of emissions. Scope 1 emissions
are direct emissions, which originate from the combustion of fossil fuels or from
releases during manufacturing. Scope 2 emissions are indirect emissions from
the consumption of electricity or steam, and Scope 3 emissions are emissions
that occur in the value chain of a firm (both upstream and downstream). CDP
translates all greenhouse gases into carbon dioxide (CO,) equivalents. We focus
on Scope 1 emissions because they are directly owned and controlled by firms.
(We find no effects for Scope 2 emissions and do not use Scope 3 emissions,
because they are not controlled by firms.) Table 1 shows that Scope 1 emissions
are highly skewed. While the average S&P 500 firm that reports emissions data
produces almost 5 million tons of carbon, the median firm emits only about
118,000 tons.

2.1.2 Variable measurement. We scale firms’ Scope 1 emissions by their
end-of-year equity market values to obtain a measure of carbon intensity.
We divide emissions by equity values because new regulation is likely to be
implemented via cap-and-trade mechanisms or carbon taxes, which implies
that the amount to be paid by a firm should be considered relative to its market
value. Specifically, the stock price of a firm with a large market value is likely
to be affected less by, for example, a carbon tax, compared to a firm with the
same emissions but a low market value. We show that results are robust if we
scale emissions by total assets instead.

We employ a firm’s industry carbon intensity as the main measure in our
regressions. First, Table 2 shows that high carbon intensities cluster within a few
industries (and sectors) and are highly skewed. Figure 2 confirms this pattern

CDP data are reliable. First, many CDP signatories are influential investors in the surveyed firms, so false reporting
could have major ramifications. Second, many institutions consider CDP data to be so trustworthy that they use
them for their own risk management (Krueger, Sautner, and Starks 2020), and leading ESG data providers use
them for rating models (e.g., MSCI ESG Research, Bloomberg, or Sustainalytics).
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Figure 1

CDP disclosure over time

This figure reports how disclosure of carbon emissions to CDP by S&P 500 firms has evolved over time. Panel A
reports the number of S&P 500 firms disclosing (blue) and not disclosing (white) the carbon emissions generated
in a given year as a fraction of the number of firms in the S&P 500. Panel B reports the market capitalization of
firms disclosing (blue) and not disclosing (white) the carbon emissions generated in a given year as a fraction of
the total market capitalization of the S&P 500.

across the sample.13 Second, Table 3, panel A, documents that firms’ carbon
intensities are primarily driven by industry characteristics. The panel explains in
columns 1 and 2 a firm’s carbon intensity, log(Scope I/MV firm). While column

Internet Appendix Table 1 shows that unscaled emissions are similarly skewed. In fact, the top-20 emitting firms
alone generate about 60% of all carbon emissions in the S&P 500, and 29% come from just five firms.
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Figure 2

Distribution of carbon intensities across S&P 500 firms

This figure reports a histogram of log(Scope 1/MV firm). Scope 1/MV firm are a firm’s Scope 1 carbon emissions
(in metric tons of CO,) divided by the firm’s equity market value (in millions $). The sample includes S&P 500
firms with data on carbon emissions disclosed to CDP. The sample covers emissions generated between 2009
and 2016.

1 uses a firm’s industry carbon intensity, log(Scope 1/MV industry), as the only
explanatory variables, column 2 adds firm characteristics and year fixed effects.
In column 1, the adjusted R? of the regression is .920, which demonstrates that
firm-level variation in carbon intensity is largely subsumed by industry-level
variation. In column 2, the adjusted R? increases only slightly, which indicates
that firm characteristics play only a modest role in explaining firm-level carbon
intensities. Columns 3 and 4 estimate the same regressions from columns 1
and 2 but rely on unscaled instead of scaled emissions. We report these two
regressions to ensure that our results are not affected by the use of market values
on both sides of the equations. Reassuringly, the regressions confirm the pattern
that is documented in the first two columns. Third, Bolton and Kacperczyk
(2020) show that the effects of Scope 1 intensities on returns and exclusionary
screening by investors are driven by industry characteristics.

Therefore, our variable of interest is Scope 1/MV industry, defined as total
Scope 1 carbon emissions (in metric tons of CO,) of all reporting firms in the
industry divided by the total market capitalization of all reporting firms in the
industry (in millions $). The measure is calculated at the SIC4 level because
emissions can vary substantially within the SIC2 level (Internet Appendix
Table 2).
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Table 1

Summary statistics

Variable Mean STD 25th Median 75th Obs.
Scope 1 firm 4,957,597 15,853,469 16,829 117,715 1,078,551 1,963
Scope 1/MV firm 313.82 1,131.91 1.15 6.76 54.46 1,815
Scope 1/MV industry 261.85 757.36 1.61 6.43 48.64 1,903
Scope 2/MV firm 38.20 69.56 5.02 12.70 36.36 1,763
Industry CDP disclosure 0.710 0.238 0.500 0.667 1.000 1,963
SlopeD 0.176 0.136 0.100 0.135 0.207 1,959
MFIS —0.415 0.271 —0.564 —0.429 —0.284 1,959
VRP —0.002 0.087 —0.011 0.005 0.021 1,959
Institutional ownership 0.793 0.130 0.711 0.811 0.883 1,916
log(Assets) 10.12 1.33 9.12 9.95 10.88 1,963
Dividends/net income 0.395 0.516 0.165 0.331 0.522 1,949
Debt/assets 0.263 0.157 0.149 0.246 0.362 1,960
EBIT/assets 0.104 0.072 0.053 0.095 0.143 1,963
CapEx/assets 0.039 0.038 0.013 0.028 0.055 1,959
Book-to-market 0.407 0.286 0.202 0.343 0.562 1,815
Returns 0.171 0.270 0.008 0.149 0.307 1,963
CAPM beta 1.065 0.531 0.671 1.021 1.390 1,963
Volatility 0.066 0.028 0.046 0.058 0.079 1,963
Oil beta —0.018 0.169 —0.115 —0.034 0.057 1,963

Summary statistics are reported at the firm-year level. The sample includes all firms in the S&P 500 with data on
carbon emissions disclosed to CDP. Table A.1 defines all variables in detail. The sample period covers emissions
generated during the years 2009 to 2016 and option market measures from 2010 to 2017.

2.2 Option market measures
2.2.1 Data source. We use option market measures to identify the effects of
climate policy uncertainty. Option prices subsume expectations about invest-
ment opportunities (Vanden 2008), and option-based variables work well in
predicting future assets price dynamics (e.g., Christoffersen, Jacobs, and Chang
2013). Most importantly, options-based measures reflect expectations about all
possible future events, even the rarest ones. We use options data from the
Surface File of Ivy DB OptionMetrics. For sectors, we use options on State
Street Global Advisors’ ETFs (SPDR ETFs) as the underlying. The Surface
File contains daily Black-Scholes implied volatilities for standard maturities
and delta points (for absolute deltas from 0.2 to 0.8, with 0.05 delta increments).
The implied volatilities are created from closing options prices through inter-
and extrapolation in the time and delta dimensions. Although these implied
volatilities do not correspond to traded option contracts and form a standardized
volatility surface, they reflect the consensus expectations of market participants
priced into the options. We select OTM calls and puts with absolute deltas
smaller than 0.5. Return and market capitalization data are from CRSP.!4

We process the surface data to make them less discrete in the moneyness
(defined as strike over spot) dimension. For each underlying, maturity, and day,

We obtain the composition of the S&P 500 and its sectors from Compustat and merge these data with data from
CRSP through the CCM linking table using GVKEY and IID to link to PERMNO, following the second-best
method from Dobelman, Kang, and Park (2014). We match CRSP data with options data through the historical
CUSIP link, provided by Ivy DB OptionMetrics.
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Table 2
Firms’ carbon intensities by industry and sector

A. Ranking of top-10 industries by Scope 1/MV firm

Rank Industry name SIC2 Mean STD 25th Median  75th  Obs.
1 Primary metal industries 33 12,029 549 11,642 12,029 12,417 2
2 Electric, gas, & sanitary services 49 3,216 3,584 630 2,329 4,119 153
3 Stone, clay, & glass products 32 1,100 356 798 1,022 1,378 5
4 Transportation by air 45 1,091 759 479 937 1,436 26
5 Water transportation 44 334 67 281 314 407 6
6 Petroleum & coal products 29 322 46 285 330 353 16
7 Oil & gas extraction 13 232 151 133 200 306 69
8 Railroad transportation 40 200 50 157 209 244 23
9 Paper & allied products 26 189 244 44 64 421 35
10 Auto repair, services, & parking 75 188 36 163 171 225 7

B. Ranking of S&P 500 sectors by Scope 1/MV sector

Rank  Sector SPDR ETF  Mean STD 25th Median  75th  Obs.
1 Utilities XLU 2,396 572 1,880 2,602 2,883 8
2 Energy XLE 324 45 290 314 355 8
3 Materials XLB 292 59 280 304 327 8
4 Industrials XLI 54 5 51 53 57 8
5 Consumer staples XLP 19 3 16 19 21 8
6 Consumer discretionary XLY 16 12 8 11 21 8
7 Healthcare XLV 4 2 3 4 6 8
8 Technology XLK 12 0.7 0.6 1.1 1.8 8
9 Financials XLF 0.8 0.3 0.5 0.8 1.0 8

Panel A reports firms’ Scope 1 carbon intensities for the top-10 industries. Statistics are reported at the firm-year
level across different SIC2 industries. Scope I/MV firm are a firm’s Scope 1 carbon emissions (in metric tons of
CO,) divided by a firm’s equity market value (in millions $). We rank industries by the average carbon intensity
of firms in an industry. The sample includes all firms in the S&P 500 with data on carbon emissions disclosed to
CDP. The sample period covers emissions generated during the years 2009 to 2016. Not all firms are included in
our sample across all years, which explains why the number of observations in some industries falls below eight.
Panel B reports Scope 1 carbon intensities of the economic sectors of the S&P 500. Statistics are reported at the
sector-year level. Scope 1/MV sector are a sector’s Scope 1 carbon emissions (in metric tons of CO;) divided
by a sector’s equity market value (in millions $). We rank sectors by the average sector carbon intensity. The
sample includes 9 of the 11 sectors of the S&P 500. The sample period covers emissions generated during the
years 2009 to 2016.

we interpolate the observed implied volatilities as a function of moneyness
within the available data range using monotonic cubic splines (piecewise cubic
Hermite interpolating polynomials). We then fill in the implied volatilities
beyond the observed moneyness bounds with the volatilities on the bounds.
For OTM puts, we use the leftmost available data point (corresponding to a
Black-Scholes delta of -0.2), and for OTM calls, we use the rightmost available
data point (corresponding to a delta of 0.2). In this way, we produce 1,001
data points over the moneyness range from 1/3 to 3 (corresponding to equally
spaced points from a log-moneyness of -log 3 to log 3). Each of these data points
contains an implied volatility for a particular moneyness level and, hence, for
an option delta level.

2.2.2 Variable measurement.

2.2.2.1 Primary measure: Implied volatility slope. The implied volatility
slope (SlopeD), borrowed from KPV, is a function relating the left-tail
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Table 3
Determinants of carbon intensities, carbon emissi and carbon disclosure to CDP
A. Determinants of carbon intensities B. Disclosure
or carbon emissions decision
log(Scope 1/ log(Scope 1 CDP
Dependent variable: MYV firm) firm) disclosure
(e)) 2) 3) (C)) 5
log(Scope 1/MV industry) 0.969*** 0.940%**
(180.20) (87.06)
log(Scope 1 industry) 1.015%** 0.927%+*
(148.91) (50.36)
Industry CDP disclosure 0.926™**
(113.84)
log(Assets) 0.015 0.342%** 0.076™***
(0.89) (8.77) (11.69)
Dividends/net income 0.056* 0.125** 0.019
(1.78) (2.44) (1.35)
Debt/assets 0.561%+* 1.123%** —0.067*
(3.80) (4.19) (—1.75)
EBIT/assets 0.073 2.334%%* 0.202%*
(0.23) (3.85) (1.99)
CapEx/assets 1.807** 5.812%** —0.121
(2.27) (3.98) (—0.88)
Book-to-market 0.365%** 0.142 —0.104%**
(3.82) (0.93) (—2.85)
Returns 0.013 0.059 —0.051*
(0.16) (0.33) (—1.89)
Institutional ownership 0.212 0.022 —0.084
(1.26) (0.09) (—1.35)
CAPM beta 0.093%** 0.168** 0.0427%**
(2.98) (2.57) (3.16)
Volatility —2.444%*% —8.362%** —0.530*
(—3.05) (—4.45) (—1.70)
Oil beta —0.096 —0.341* 0.041
(—1.13) (—1.86) (1.23)
Time trend —0.006 —0.029 —0.006**
(=0.70) (-1.37) (~1.97)
Model OLS OLS OLS OLS OLS
Year fixed effects No Yes No Yes Yes
Level Firm Firm Firm Firm Firm
Frequency Annual Annual Annual Annual Annual
Obs. 1,815 1,772 1,963 1,772 3,206
Adj. R? 920 922 827 850 461

Regressions in panel A are estimated at the firm-year level. Scope I/MV firm are a firm’s Scope 1 carbon emissions
(in metric tons of CO,) divided by the firm’s equity market value (in millions $). Scope 1/MV industry is the
Scope 1 carbon intensity of all firms in the same industry (SIC4) and year. It is defined as total Scope 1 carbon
emissions (metric tons of CO,) of all reporting firms in the industry divided by the total market capitalization
of all reporting firms in the industry (in millions $). Scope I firm are a firm’s Scope 1 carbon emissions (in
metric tons of COy) (unscaled). Scope 1 industry are the Scope 1 carbon emissions (in metric tons of CO;) of
all firms in the same industry (SIC4) and year (unscaled). The sample includes all firms in the S&P 500 with
data on carbon emissions disclosed to CDP. The sample period covers emissions generated during the years
2009 to 2016. Regressions in panel B are estimated at the firm-year level. CDP disclosure equals one for a given
firm-year if a firm discloses data on the carbon emissions released during the year, and zero otherwise. Industry
CDP disclosure is the fraction of firms in the same SIC4 industry and year that discloses data on the carbon
emissions released during the year. The sample includes all firms in the S&P 500. The sample period is the same
as in the first panel. Table A.1 defines all variables in detail. z-statistics, based on standard errors clustered by
industry (SIC4) and year, are in parentheses. *p <.1; **p <.05; ***p < .01.
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implied volatility to moneyness, measured using the Black-Scholes delta.
Specifically, SlopeD is the slope coefficient from regressing implied volatilities
of OTM puts (deltas between -0.5 and -0.1) on the corresponding deltas
and a constant. Because far OTM puts (with smaller absolute deltas) are
typically more expensive, SlopeD usually takes positive values. A more
positive value of SlopeD indicates that deeper OTM puts are relatively more
expensive, suggesting a relatively higher cost of protection against downside
tail risks. Because SlopeD is defined as a regression slope, it measures relative
expensiveness and does not depend on the average level of the implied volatility.
This feature allows us to compare the measure across firms with different levels
of general risk. SlopeD is our preferred measure as it most directly captures the
relative cost of protection against downside tail risk. Intuitively, it quantifies the
cost of protection against extreme downside tail events relative to the cost of
protection for less extreme downside events. We derive our results from options
with 1-month maturities and provide results for maturities of up to 12 months
for robustness. (Internet Appendix B illustrates the information content of this
and the two other measures.)

2.2.2.2 Additional measures: Model-free implied skewness and variance
risk premium. MFIS is constructed following Bakshi, Kapadia, and Madan
(2003, BKM hereafter) and quantifies the asymmetry of the risk-neutral
distribution. It is computed using the standard formula for the skewness
coefficient, that is, as the third central moment of the risk-neutral distribution,
normalized by the risk-neutral variance (raised to the power of 3/2). By
being normalized, MFIS also provides information about the expensiveness
of protection against left tail events, though now relative to right tail events.
As changes in the distribution asymmetry are driven by the probability mass
in the downside relative to the upside region, MFIS is affected by both tails.
In terms of interpretation, more negative values of MFIS indicate a relocation
of probability mass under the risk-neutral measure (i.e., after adjusting for
preferences toward risk) from the right to the left tail. Like in BKM, MFIS at
time t for period 7 is given by

ETW(t,T)=3ult, 0"V (e, T)+2u(t, 1)}
[er™V(t,T)—u(t,7)*]*/?

where V(¢,7) and W(¢,7) are prices of variance and cubic contracts,
respectively; r is the prevailing risk-free rate; and w(z, 1) is the risk-neutral
expectation of the underlying log return over the period . All unknown
ingredients (variance, cubic contracts, and expected log return) in the formula
are computed by integration of some functions of options prices over the
continuum of strikes for a given maturity (see BKM for details). We
approximate these integrals with finite sums using the interpolated volatility
surface (see above). As MFIS captures the distribution of the probability mass in
the left versus the right tail of the risk-neutral distribution, it can be interpreted

MFIS(t,7)=
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as the cost of protection against left tail events relative to the cost of gaining
positive realizations on the left tail.

VRP is computed as the difference between the risk-neutral expected and the
realized variance (Carr and Wu 2009; Bollerslev, Tauchen, and Zhou 2009).
As a proxy for the risk-neutral expected variance, we use the model-free
implied variance (MFIV, ,.)) computed on day ¢ for maturity M following
Britten-Jones and Neuberger (2000) by again approximating the respective
integrals with finite sums using the interpolated volatility surface observed
on day ¢ for maturity M. The realized variance (RV, ;) is computed from
daily log returns over a future window from ¢ to #+ M, that is, with a length
corresponding to the maturity of the options used for the risk-neutral variance.
The variance risk premium (VRP; ;4y) for maturity M is computed in the ex
post version on each day ¢t as MFIV, ;,,y—RV, ;+m, and expressed in annual
terms. "

VRP captures the cost of protection against general uncertainty-related
volatility changes in down and up directions, whereas our other measures
capture the relative cost of protection against left tail risk (relative to “normal”
risks, SlopeD, or relative to the right tail, MFIS).

3. Empirical Model

3.1 Selection model and truncation rule

We estimate a selection model to mitigate the concern that our estimates are
biased because firms voluntarily disclose their carbon emissions to CDP. The
need for a selection model arises because firms only disclose their emissions
if the (unobservable) net benefit of disclosing is positive. As a result, we only
observe the emissions generated by firm i during year ¢ if the firm discloses this
information to CDP (i.e., if CDP disclosure; ;=1). In all other cases, data on
carbon emissions is missing (i.e., if CDP disclosure; ; =0). We therefore jointly
estimate the following model:

OMM,; ;141 = Bo+P1Log(Scopel IMV i”dus”'y)i,t +xi,tﬁ +uimes1, (1)
CDP disclosure; ; = yo+y1Industry CDP disclosure; ;+Xiy +v; ;, 2)

whereby Equation (1) constitutes the outcome equation and Equation (2)
the selection equation. As explained, Equation (1) is only observed if CDP
disclosure; ;=1. We relate a firm’s carbon intensity in year ¢ to option market
measures (OMM, , ,+1) in year ¢ +1 as emissions of year ¢ are only made public

We follow KPV to compute the ex post VRP as opposed to an ex ante VRP (which is used by, e.g.,
Bollerslev, Tauchen, and Zhou 2009). The reason for selecting the ex post version is that, by construction,
it reflects all the information flow from the observation date to the option maturity and can capture the reaction
of traders to particular events, while the ex ante version is based only on expectations formed before and on the
observation date, which implies that it can miss important information. We thank a referee for pointing out this
potential problem. Note that our results are robust to using either version of VRP.
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by CDP in year 7+1 (at the end of October). Consequently, information about
emissions generated in year ¢ is only available to investors in the 12-month
period starting from November of year 7 + 1. For our sample period, this implies
that we estimate the effect of emissions generated between 2009 and 2016
on option market variables measured between November 2010 and December
2017. Note that we employ a firm-level selection model even though carbon
intensities are at the industry level. The reason is that, for some industries, no
firms within the S&P 500 disclose any emissions data. This makes industry
carbon intensities unobserved for some firms and may bias ordinary least
squares (OLS) estimates.

We estimate our model using full-information maximum likelihood (FIML)
with the assumptions that (u; , ;+1,v;,) is bivariate normal with zero means
and nonzero variances; u; ,, 4+ 1S uncorrelated over m within a given firm-
year; and Cov(u; u +1,V;i,) is nonzero. Joint normality of the error terms is
more restrictive than the assumptions required by the Heckman (1979) two-
step procedure. However, the FIML estimator has the advantage that it is more
efficient (Wooldridge 2010) and that it produces standard errors that can be used
directly. Our setting differs from a standard selection model in that Equations
(1) and (2) operate at different observation levels. While the decision to disclose
carbon emissions is at the firm-year level (i.e., (i, )), the option market measures
are the firm-month-year level (i.e., (i,m,t+1)). Internet Appendix C discusses
how this affects the FIML estimator. A similar FIML model with data from
different observation levels is also estimated in Brav et al. (2019).

3.2 Outcome equation: Option market variables and carbon intensities
For firm i in month m and year 7 + 1, each option market measure is calculated as
the average across daily values. We estimate regressions at the firm-month level
to increase power, to exploit that the options measures are available throughout
the year, and because emissions are relatively persistent within the firm-year.
Importantly, some of our tests also explore how the effect of emissions varies
when climate attention fluctuates within the year (monthly).

Scope 1/MV industry;, is the Scope 1 industry carbon intensity of firm
i during year t. We use (one plus) the variable’s natural logarithm because
emission intensities are highly skewed. Results are unaffected by within-year
changes in equity market values (the denominator of the emissions variable) as
we scale emissions by end-of-year market capitalizations.

We control for firm characteristics that prior work identified as determi-
nants of firm risk, notably log(Assets), Dividends/net income, Debt/assets,
EBIT/assets, CapEx/assets, Book-to-market, Returns, CAPM beta, and
Volatility (unless we explain the VRP). We also control for Institutional
ownership, Oil beta, and a time trend. Control variables are measured at year ¢.

3.3 Selection equation: CDP disclosure decision
CDP disclosure;; equals one if firm i discloses data to CDP on the carbon
emissions released during year ¢ and zero otherwise. Equation (2) includes the
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same control variables as the outcome regression, but additionally controls for
the disclosure level in firm i’s industry in year ¢ (Industry CDP disclosure;,).
We include this variable to capture the effects of peer pressure on the decision to
disclose emissions. As more firms within an industry disclose their emissions,
nondisclosers likely feel greater pressure to disclose their CO, footprints too.
Like with Matsumura, Prakash, and Vera-Munoz (2014), for our purposes, this
variable constitutes the excluded instrument in Equation (2), so it is omitted
in Equation (1). Internet Appendix D discusses potential violations of the
exclusion restriction.

Table 3, panel B, reports the selection regression. The estimates show that the
propensity for a firm to report emissions significantly increases if other firms
in the same industry disclose their data as well. In column 5, a one-standard-
deviation shock in Industry CDP disclosure (0.32) increases the probability to
disclose emissions by 30%, a large number relative to the unconditional mean of
51%. The estimates in Table 3, panel B, confirm the importance of accounting
for selection bias. Firms that disclose emissions are larger, have lower leverage,
higher earnings, lower book-to-market ratios, higher betas, and lower volatility.

4. Empirical Results

4.1 Carbon intensity and downward option protection: Cross-sectional
results

4.1.1 Firm- and sector-level evidence: Main results. Table 4, panel A, tests
Hypothesis 1 and reports firm-level regressions of the effects of log(Scope 1/MV
industry) on option market measures. Column 1 shows that a firm’s industry
carbon intensity has a positive and significant effect on SlopeD. A one-standard-
deviation increase in a firm’s log industry carbon intensity (2.28) increases
SlopeD by 0.014, which equals 10% of the variable’s standard deviation.
In comparison, a one-standard-deviation decrease in a firm’s profitability
(EBIT/assets) increases SlopeD by 0.013 or 10% of the variable’s standard
deviation. SlopeD is generally lower for firms that are larger, that are more
profitable, invest less, and have lower volatility. It is higher for firms with
higher leverage and with higher book-to-market ratios.

Column 2 shows that we cannot detect that a higher carbon intensity is
associated with a more negatively skewed risk-neutral distribution of a firm’s
stock return (MFIS). The weaker results for MFIS may reflect that this measure
does not directly capture left tail risk. Instead, MFIS captures the cost of
protection against left tail events relative to right tail events. In fact, Internet
Appendix Table 3 shows that carbon-intense firms also have higher right tail
risk (as reflected in the negative coefficient on SlopeU), which may explain
why we do not find effects for MFIS. In column 3, we find that carbon-intense
firms exhibit a higher variance risk premium (VRP): a one-standard-deviation
increase in log industry emissions increases the VRP by 0.002, or 3% of the
standard deviation.
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Table 4
Carbon intensities and option market variables: Main results

A. Firm-level regressions

Dependent variable: SlopeD MFIS VRP
(€)) (@) 3
log(Scope 1/MV industry) 0.006™** —0.002 0.001%**
(3.85) (—0.70) 3.79)
log(Assets) —0.029*** —0.043%** —0.005%**
(=9.22) (—8.04) (=7.10)
Dividends/net income 0.009 —0.014 —0.000
(1.54) (~1.26) (—0.00)
Debt/assets 0.038%* 0.062** 0.003
(2.28) (2.00) (0.71)
EBIT/assets —0.187*** —0.078 —0.018
(~4.59) (=1.02) (~1.60)
CapEx/assets —0.374%%* 0.216* —0.060**
(=5.13) (1.75) (—2.35)
Book-to-market 0.077*** 0.122%** 0.016***
(8.10) (5.21) (4.30)
Returns —0.018** —0.054*** —0.010*
(—2.13) (—2.95) (—1.93)
Institutional ownership —0.045* —0.085 —0.008
(—=1.75) (—1.59) (—1.20)
CAPM beta 0.010 —0.033%** —0.001
(1.42) (=3.18) (—0.44)
Volatility —0.687*** 1.926%**
(—6.48) (8.27)
Oil beta —0.008 —0.003 —0.020%**
(=0.50) (~0.10) (=2.73)
Time trend —0.000 0.033%** —0.001*
(—0.29) (9.93) (—1.67)
Model Heckman Heckman Heckman
Year-by-quarter fixed effects Yes Yes Yes
Level Firm Firm Firm
Frequency Monthly Monthly Monthly
Obs. 18,664 18,664 18,664
Adj. R2 n/a n/a n/a
(Continued)

If industry characteristics largely capture investors’ perceptions of firms’
carbon intensities, then we should be able to also identify effects at the sector
level. We next use option measures directly derived from S&P 500 sector
ETF options. To calculate a sector’s carbon intensity, Scope 1/MV sector, we
aggregate emissions of all CDP-disclosing S&P 500 firms in a sector and divide
them by the respective firms’ equity market values. To do this, we first identify
the sectors to which each disclosing firm belongs. As sector weights vary with
stock market performance, we then construct monthly sector weights (averages
of daily weights) for each firm. Subsequently, we multiply these weights by the
emissions of each sector constituent, using only disclosing firms. We use the
resultant weighted average emissions as a proxy for sector-level emissions.'®

The sector-level analysis does not allow us to estimate a selection model. However, bias from selective disclosure
could be plausibly less of a concern in this analysis, as there are only a few S&P 500 sectors.
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Table 4
(Continued)

B. Sector-level regressions

Dependent variable: SlopeD MFIS VRP
€8} (@) 3
log(Scope 1/MV sector) 0.037%%* —0.067* 0.003
(2.80) (-1.92) (1.46)
Model OLS OLS OLS
Sector fixed effects Yes Yes Yes
Level Sector Sector Sector
Frequency Monthly Monthly Monthly
Obs. 774 774 774
Adj. R? 138 366 .005

Regressions in panel A are estimated at the firm-month level. SlopeD measures the steepness of the function
that relates implied volatility to moneyness (measured by an option’s Black-Scholes delta) for OTM put options
with 30 days maturity. MFIS is a measure of the model-free implied skewness. VRP is a measure of the variance
risk premium. Scope 1/MV industry is the Scope 1 carbon intensity of all firms in the same industry (SIC4) and
year. It is defined as total Scope 1 carbon emissions (metric tons of CO5) of all reporting firms in the industry
divided by the total market capitalization of all reporting firms in the industry (in millions $). The sample
includes all firms in the S&P 500 with data on carbon emissions disclosed to CDP. We estimate the effect of
emissions generated between 2009 and 2016 on option market variables measured between November 2010 and
December 2017. ¢-statistics, based on standard errors clustered by industry (SIC4) and year, are in parentheses.
Regressions in panel B are at the sector-month level. The option variables are calculated for S&P 500 sector
options. Scope 1/MV sector is the Scope 1 carbon intensity of a sector. It is defined as a sector’s Scope 1 carbon
emissions (in metric tons of CO,) divided by a sector’s equity market value (in millions $). The sample includes
9 of the 11 sectors of the S&P 500. The sample period is the same as in the first panel. 7-statistics, based on
standard errors clustered by sector and year, are in parentheses. Table A.1 defines all variables in detail. n/a, not
applicable. *p <.1; **p <.05; ***p < .01.

A similar procedure is used to compute the equity market values of each sector,
using again only disclosing firms. Our sample includes 9 of the 11 sectors of
the S&P 500. Sector intensities are largest in the Utilities and Energy sector, as
displayed in Table 2, panel B.

Table 4, panel B, documents in column 1 that sector carbon intensities remain
positively and statistically related to SlopeD. A one-standard-deviation increase
in a sector’s log carbon intensity (2.35) increases SlopeD by 0.09, almost 1.4
times the risk variable’s standard deviation. Results are again weaker for the
other two measures. While we now find a weakly significant effect for MFIS in
column 2, the effect for VRP in column 3 is insignificant with a z-stat of 1.46.

Taken together, the results indicate that higher climate policy uncertainty
increases the firm-level likelihood of left and right tail events, and it has some
effect on firm-level VRP. On the sector level, where firm-specific risks are
diversified away, we observe an effect that is more systematic and concentrated
in the left tail. (One other reason sector-level results may differ from those at the
firm level is that sector carbon intensities are noisier as we do not have carbon
emissions for all firms in a given sector; this may introduce measurement error.)

4.1.2 Firm versus industry carbon intensities: Relative importance.
The firm-level analysis raises the question of whether firms with carbon
intensities that are lower (higher) than those of their industry peers exhibit
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Table 5
Firm versus industry carbon intensities: Relative importance
Dependent variable: SlopeD SlopeD SlopeD
(1 2 (3)
log(Scope 1/MV firm) 0.006***
3.39)

Residual log(Scope 1/MV firm) 0.003 0.005

(0.81) (1.06)
log(Scope 1/MV industry) 0.006***

(3.76)

Model Heckman Heckman Heckman
Controls Yes Yes Yes
Year-by-quarter fixed effects Yes Yes Yes
Level Firm Firm Firm
Frequency Monthly Monthly Monthly
Obs. 18,664 18,664 18,664
Adj. R? n/a n/a n/a

Regressions are estimated at the firm-month level. SlopeD measures the steepness of the
function that relates implied volatility to moneyness (measured by an option’s Black-
Scholes delta) for OTM put options with 30 days maturity. Scope 1/MV firm are a
firm’s Scope 1 carbon emissions (in metric tons of CO;) divided by the firm’s equity
market value (in millions $). Scope I/MV industry is the Scope 1 carbon intensity of
all firms in the same industry (SIC4) and year. It is defined as total Scope 1 carbon
emissions (metric tons of CO;,) of all reporting firms in the industry divided by the
total market capitalization of all reporting firms in the industry (in millions $). Residual
log(Scope 1 MV/firm) is the residual of an OLS regression with log(Scope 1/MV firm)
as the dependent variable and log(Scope 1/MV industry) as the independent variable.
The regressions in the table control for log(Assets), Dividends/net income, Debt/assets,
EBIT/assets, CapEx/assets, Book-to-market, Returns, Institutional ownership, CAPM
beta, Volatility, Oil beta, and a time trend (not reported). The sample includes all firms
in the S&P 500 with data on carbon emissions disclosed to CDP. We estimate the effect
of emissions generated between 2009 and 2016 on option market variables measured
between November 2010 and December 2017. ¢-statistics, based on standard errors
clustered by industry (SIC4) and year, are in parentheses. Table A.1 defines all variables
in detail. n/a, not applicable. *p <.1; **p <.05; ***p < .01.

less (more) downside tail risk once we account for industry effects. To this
end, Table 5 evaluates the relative importance of firm- versus industry-level
carbon intensities. As a starting point, column 1 documents that firm-level
carbon intensities, log(Scope 1/MV firm), are also positively and significantly
related to SlopeD. The economic magnitudes of the effects are also similar.
Nevertheless, to what extent this finding reflects firm, rather than industry,
effects is unclear. We therefore evaluate in the next two columns whether
there is information in firm-level carbon intensities beyond what is captured in
industry-level variation. We first estimate a regression in which we calculate for
each firm-year the part of firm-level carbon intensities that is unexplained by
industry-level intensities. By construction, the estimated regression residual
is positive (negative) for firm-years where firm-level carbon intensities are
above (below) those of the industry peers. Columns 2 and 3 of Table 5 replace
log(Scope 1/MV firm) with this regression residual. The estimates show that
firm-level residual carbon intensities are unrelated to SlopeD, when we both
do and do not control for industry-level emissions. Importantly, log(Scope
1/MV industry) remains positively and significantly related to SlopeD, even
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after accounting for the firm-level residual. This confirms that the market’s
perception of a firm’s exposure to climate policy uncertainty is driven by its
industry affiliation.

4.1.3 Firm- and sector-level evidence: Robustness. Internet Appendix
Tables 4 and 5 address different concerns with our analysis. Internet Appendix
Table 4, panel A, shows that our firm-level results for SlopeD are highly robust.
In column 1, results are unchanged if we scale emissions by total assets instead
of equity values. In column 2, results are unaffected when we estimate a
regression at the firm-year level using annual values of SlopeD. Column 3
shows that results are similar for OLS regressions. In column 4, the magnitude
of the effects increases with firm fixed effects. In column 5, results hold after
dropping oil and gas firms, indicating that results are not driven by the decline in
oil prices between 2014 and 2016. In columns 6 to 8, we continue to find effects
if we calculate SlopeD from options with 3- to 12-month maturities. Column 9
shows that Scope 2 intensities are unrelated to SlopeD. In panel B, we continue
to find mostly insignificant effects for MFIS when using 30-day options (the
point estimates for most specifications remain negative). Interestingly, we do
however observe significant coefficients for longer maturities. Thus, the cost of
left tail protection relative to right tail gains seems to be growing with an option’s
horizon. Short-term options instead seem to be used mostly to take firm-specific
(volatility) bets in both directions. In panel C, the firm-level results for VRP
remain largely robust.

Internet Appendix Table 5, panel A, shows that the sector results for
SlopeD remain highly robust. Apart from scaling by assets and using annual
values, the robustness tests include a variety of alternative fixed effects as
well as option maturities of up to one year. Panel B confirms the sector-level
evidence for MFIS from the main analysis: the point estimates are negative
in almost all cases, though highly significant coefficients appear rarely. In
panel C, results continue to be mostly insignificant for VRP, as in the main
analysis.

Our emissions data from CDP are only available for the years between 2009
and 2016, but options data exist for much longer. To analyze results for the
more distant past, we use a prediction model and backfill Scope I/MV firm
for the years 1995 to 2008. Using predicted carbon intensities, we observe a
statistically insignificant effect of carbon intensities on SlopeD (see Internet
Appendix Table 6). This suggests that climate policy uncertainty was priced
to a lower extent in the more distant past, assuming that our prediction model
delivers reasonable emission estimates.

4.2 Carbon intensity, downward option protection, and attention to
climate change

To test Hypothesis 2, we allow the effect of carbon intensities to vary with

two proxies for public attention to climate change. To create the first proxy,
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we use an index developed by Engle et al. (2020) which captures the share
of news articles in outlays, such as Wall Street Journal, The New York Times,
or Yahoo News, that are about “climate change” and have been assigned to
a “negative sentiment” category. We capture the time-series effects of climate
attention by creating Negative climate change news high, which equals one if the
Engle et al. (2020) index is above the median, and zero otherwise.

To create the second proxy, we use Google’s search volume index (SVI) for
the search topic “climate change.” The index takes values between 0 and 100,
with 100 corresponding to the month with the highest number of searches on
climate change topics during our sample period. We use monthly U.S. search
data. We then create the dummy variable Climate change SVI high, which
equals one if the search index is above the median, and zero otherwise. Search
activity on Google plausibly proxies for attention by investors, as shown by
Da, Engelberg, and Gao (2011). Choi, Gao, and Jiang (2020) show that search
volume on climate change topics surges when investors experience abnormally
high temperatures.

The regressions in Table 6 then interact each of these two variables with
log(Scope 1/MV industry). Column 1 provides the results for the Engle et al.
(2020) index, and column 2 those for Google’s SVI. The estimates in column
1 show that log(Scope 1/MV industry) has a positive and significant effect on
SlopeD during low-attention times (i.e., when Negative climate change news
high is zero). Importantly, the coefficient estimate on the interaction term, which
is positive (0.002) and significant (¢-stat of 1.67), reveals that the effect of carbon
intensities on SlopeD increases by 40% during high-attention times. During
such times, the total effect of log(Scope I/MV industry) on SlopeD equals
0.007(=0.002+0.005), which is also statistically significant. In column 2, using
Google’s SVI as the proxy for attention, we continue to find a positive effect of
log(Scope 1/MV industry) on SlopeD during periods of low and high climate
change attention. However, the interaction term that reflects the difference
between these two states of the world is statistically insignificant (though it has
the predicted positive sign). Overall, the results in Table 6 therefore provide
only weak evidence in support of Hypothesis 2.

4.3 Effect of the 2016 election of President Trump: Event study results

To test Hypothesis 3, we use President Trump’s election in 2016 as an event
that reduced climate policy uncertainty in the short term. President Trump’s
election was unexpected and, unlike his opponent Hillary Clinton, his positions
on climate policies were mostly about preserving the status quo, which was
characterized by a lack of strict climate regulation. His election on November
9, 2016, therefore, should have lowered the cost of option protection for carbon-
intense firms. To quantify the effect of President Trump’s election, we estimate a
difference-in-differences (DiD) model, using daily option data around Election
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Table 6
Carbon intensities and option market variables: Effects of public attention to climate change
Dependent variable: SlopeD SlopeD
@ 2
log(Scope 1/MV industry) x Negative climate change news high 0.002*
(1.67)
log(Scope 1/MV industry) x Climate change SVI high 0.001
(0.45)
log(Scope 1/MV industry) 0.005%** 0.006***
(3.47) (3.61)
Negative climate change news high —0.003
(—0.82)
Climate change SVI high —0.005
(—1.01)
Estimated slope if Negative climate change news high = 1 0.007***
Estimated slope if Climate change SVI high = 1 0.007***
Model Heckman Heckman
Controls Yes Yes
Year-by-quarter fixed effects Yes Yes
Level Firm Firm
Frequency Monthly Monthly
Obs. 18,664 18,664
Adj. R2 n/a n/a

Regressions are estimated at the firm-month level. SlopeD measures the steepness of the function that relates
implied volatility to moneyness (measured by an option’s Black-Scholes delta) for OTM put options with
30 days maturity. In column 1, we measure attention to climate change using Negative climate change news
high, which is a dummy variable based the CH Negative Climate Change News Index developed in Engle
et al. (2020) (as in their paper, we use monthly averaged AR(1) innovation of the index). Negative climate
change news high equals one if the index is above the median, and zero otherwise. In column 2, we measure
attention to climate change using monthly values of Google’s SVI for the search topic “climate change.”
SVI is a relative index and takes values between 0 and 100. The highest number of searches in a month
takes the value of 100 and values for other months are relative to this number. Climate change SVI high
equals one if Google’s SVI is above the median, and zero otherwise. Scope I/MV industry is the Scope
1 carbon intensity of all firms in the same industry (SIC4) and year. It is defined as total Scope 1 carbon
emissions (metric tons of CO,) of all reporting firms in the industry divided by the total market capitalization
of all reporting firms in the industry (in millions $). The regressions control for log(Assets), Dividends/net
income, Debt/assets, EBIT/assets, CapEx/assets, Book-to-market, Returns, Institutional ownership, CAPM
beta, Volatility, Oil beta, and a time trend (not reported). The sample includes all firms in the S&P 500 with
data on carbon emissions disclosed to CDP. We estimate the effect of emissions generated between 2009 and
2016 on option market variables measured between November 2010 and December 2017. -statistics, based
on standard errors clustered by industry (SIC4) and year, are in parentheses. Table A.1 defines all variables in
detail. n/a, not applicable. *p <.1; **p < .05; ***p < .01.

Day 2016. We estimate the following model for firm i at day #:
OMM,; ; =yo+y1Post Trump election, x Scope 1/MV industry high;
+y2Scope 1/MV industry high; +y3Post Trump election,
+Xi 1Y +€iy 3)

In this regression, Post-Trump election equals one for all firm-day
observations after Election Day on November 9, 2016, and zero for all firm-
day observations before. To identify treatment firms for which climate policy
uncertainty likely declined the most after President Trump’s election, we create
Scope 1/MV industry high, which equals one for the ten industries with the
highest carbon intensities, and zero otherwise (see Table 2, panel A). We use
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SlopeD as the proxy for OMM and employ a relatively wide event window of
[—250; +250] days as daily option measures for single names tend to be noisy
and driven by idiosyncratic effects. For robustness, we exclude in some tests
the [—50; +50] days around Election Day.!” We report results with different
sets of fixed effects.

Our test relies on the sharp climate policy differences between President
Trump and Hillary Clinton. Other policy differences may confound our results
if they are correlated with the treatment status. Two such important differences
are tax and healthcare policies. With respect to tax policies, Clinton supported an
increase in taxes on high-income earners, whereas President Trump campaigned
on large corporate tax cuts.'® To ensure that expected tax changes do not
contaminate our results, we control for firms’ effective tax rates (interacted
with the post-election dummy). With respect to healthcare policies, President
Trump campaigned on repealing Obamacare, whereas Clinton did not announce
any plans to do so. To verify that results are not driven by an increase in
SlopeDamong healthcare firms (which have low emissions and are part of the
control group), we exclude such firms in a robustness test.

Table 7 shows that y; in Equation (3), the DiD estimator, is negative and
statistically significant across all specifications. This indicates that the cost of
downward protection at highly carbon-intense firms significantly decreased
after President Trump’s election, relative to less carbon-intense firms. In
economic terms, column 1 implies that SlopeD of firms in carbon-intense
industries decreased by 0.025 after the election, relative to firms in industries
with low carbon intensities. This decline equals 12% of the variable’s standard
deviation during the event window. Results are similar in Columns 2 to 4,
which add different sets of fixed effects to the model. The point estimate of
the DiD effect is largest in Column 5, in which we exclude the narrow window
directly surrounding the election. Results are unaffected if we drop healthcare
firms in column 6. The estimates further indicate that tail risk generally declined
after President Trump’s election (negative coefficients on Post-Trump election),
which may reflect that policies are more business friendly under a Republican
government.

We perform several further robustness tests. Internet Appendix Table 7 shows
that SlopeD exhibits parallel trends for high- and low-emission firms prior to
the election. Internet Appendix Table 8, panel A, shows that results are similar
for longer and shorter event windows. However, the statistical significance gets
weaker once we move to a shorter window. Internet Appendix Table 8, panel
B, verifies that our results do not reflect a seasonal pattern in early November.
To this end, we generate a series of placebo dates with the same day and month

We want to exclude potentially confounding effects related to the generally higher uncertainty around elections,
which are reflected in options spanning those days (see KPV).

Wagner, Zeckhauser, and Ziegler (2018) find that firms with high effective tax rates and large deferred tax
liabilities benefitted from President Trump’s election.
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Table 7
Effect of the election of President Trump in 2016 on option market variables
Dependent variable: SlopeD SlopeD SlopeD SlopeD SlopeD SlopeD
[—250; +250],
[—250; +250], excl. [-50;
[—250; [—250; [—250; [—250; excl. +50], excl.
Event window: +250] +250] +250] +250] [—50; +50] Healthcare
(1) 2) 3) (4) (5) ©)
Post-Trump election x —0.025%*  —0.029%*  —0.025*** —0.020** —0.037%+* —0.035%*
Scope 1/MV industry high (—2.18) (—2.43) (—2.88) (—2.20) (—2.63) (—2.45)
Scope 1/MV industry high 0.041* 0.043* 0.046* 0.043*
(1.67) 1.77) (1.88) (1.72)
Post-Trump election —0.025%** —0.022%%*  —0.036*** —0.041%*%*
(—4.63) (—4.33) (=5.97) (—6.13)
Model DiD DiD DiD DiD DiD DiD
Controls Yes Yes Yes Yes Yes Yes
Day fixed effects No Yes Yes No No No
Firm fixed effects No No Yes No No No
Industry fixed effects No No No Yes No Yes
Level Firm Firm Firm Firm Firm Firm
Frequency Daily Daily Daily Daily Daily Daily
Obs. 200,897 200,897 200,897 200,897 159,041 139,635
Adj. R2 .062 .091 294 184 .061 .060

Regressions are estimated at the firm-day level. We report results from difference-in-differences regressions
around the date of President Trump’s election on November 9, 2016. SlopeD measures the steepness of the
function that relates implied volatility to moneyness (measured by an option’s Black-Scholes delta) for OTM put
options with 30 days maturity. Post-Trump election equals one for all days after President Trump’s election, and
zero for all days before the election. Scope 1/MV industry high equals one for firms that operate in the top-10
industries based on Scope I/MV industry, and zero otherwise (see Table 2, panel A). The regressions control
for Effective tax rate, Effective tax rate x Post-Trump election, log(Assets), Dividends/net income, Debt/assets,
EBIT/assets, CapEx/assets, Book-to-market, Returns, Institutional ownership, CAPM beta, Volatility, and Oil
beta (not reported). The sample includes all firms in the S&P 500 with data on carbon emissions disclosed to
CDP. Column 6 excludes firms in the healthcare industry (SIC4 codes 2834, 3841, 6324, 3826, 3842, 2836, 5122,
3845,8062,8071,5912,2835,3851, 3844, 3843, and 5047). t-statistics, based on standard errors double clustered
by firm and day, are in parentheses. Table A.1 defines all variables in detail. *p <.1; **p <.05; ***p <.01.

as the election date, but from all other sample years. These seven pseudo-DiD
estimators are all statistically insignificant. Internet Appendix Table 8, panel
C, uses regressions at the sector level. At the sector level, we are able to use a
shorter event window of [ —100, +100] days as daily sector options are less noisy.
To identify treatment sectors, we create Scope 1/MV sector high, which equals
one for the two sectors with the highest sector carbon intensities (Utilities and
Energy), and zero otherwise (see Table 2, panel B). The results are consistent
with those in Table 7: SlopeD of the highly carbon-intense sectors decreased
after President Trump’s election, relative to less carbon-intense sectors.!?

The noninteracted effect of Scope 1/MV sector high is negative, which is surprising, though it is only weakly
significant (while Scope 1/MV industry high has the expected positive direct effect in Table 7). A reason for the
differences may be that the number of observations (sectors) we are identifying the effects off is smaller at the
sector level (two vs. seven sectors). Moreover, sector intensities may be noisier, since not all sector constituents
disclose their emissions.
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Conclusion

Strong regulatory actions are needed to avoid the potentially catastrophic
consequences of climate change. As climate change is mostly caused by the
combustion of fossil fuels, new regulation will have to aim at significantly
curbing firms’ carbon emissions. Whether, how, and when regulatory climate
policies will be implemented is highly uncertain, and firms with carbon-intense
business models will be most affected by this uncertainty.

We show that climate policy uncertainty is priced in the option market.
Specifically, the cost of option protection against downside tail risk is larger
for more carbon-intense firms. A one-standard-deviation increase in a firm’s
log industry carbon intensity increases the implied volatility slope, which
captures protection against downside tail risk, by 10% of the variable’s
standard deviation. We confirm our results using sector options. The cost of
downward option protection is magnified when public attention to climate
change spikes. Moreover, it significantly decreased at highly carbon-intense
firms after President Trump’s election in 2016, relative to other firms.
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Appendix

Table A.1
Variable definitions

Variable

Definition

Source

SlopeD

MFIS

VRP

Scope 1/MV
industry

Scope 1/MV
industry high

Scope 1/MV firm

Scope 1/MV
sector

Scope 1/MV
sector high

Scope 2/MV
industry
CDP disclosure

Industry CDP
disclosure

Negative climate
change news
high

Steepness of the function that relates implied volatility to moneyness
(measured by an option’s Black-Scholes delta) for OTM put options
with a 30-day maturity. It is constructed as the slope coefficient from
regressing implied volatilities of OTM puts (deltas between -0.5 and
-0.1) on the corresponding deltas and a constant. Because far OTM
puts (with smaller absolute deltas) are typically more expensive, the
variable usually takes positive values. We also construct similar
measures using 91-, 182-, and 365-day maturities. To construct the
variable, we follow Kelly, Pastor, and Veronesi (2016). The variable
is constructed at the monthly level (average of daily values) or the
daily level (indicated accordingly).

Model-free implied skewness for options with a 30-day maturity. It is
computed as the third central moment of the risk-neutral distribution,
normalized by the risk-neutral variance (raised to the power of 3/2).
To construct the variable, we follow Bakshi, Kapadia, and Madan
(2003). The variable is constructed at the monthly level (average of
daily values).

Ex post variance risk premium for options with a 30-day maturity. It is
computed for each day ¢ as the difference between the risk-neutral
expected variance for the period from ¢ to 7+30 calendar days and the
realized variance measured from daily log returns for the same period
[¢, #+30] (Carr and Wu 2009; Bollerslev, Tauchen, and Zhou 2009).
As a proxy for the risk-neutral variance, we use the model-free
implied variance computed like in Britten-Jones and Neuberger
(2000). The variable is constructed at the monthly level (average of
daily values).

Annual Scope 1 carbon intensity of all carbon-disclosing firms in the
same industry (SIC4) and year. It is computed as total Scope 1 carbon
emissions (metric tons of CO;) of all reporting firms in the industry
divided by the total market capitalization of all reporting firms in the
industry (in millions $).

Dummy variable that equals one for firms that operate in the top-10
industries based on Scope 1/MV industry, and zero otherwise. The
industries are listed in Table 2, panel A.

Annual Scope 1 carbon intensity of the firm itself. It is computed as a
firm’s total Scope 1 carbon emissions (metric tons of CO;) divided
by the firm’s equity market value (in millions $) at the end of the year.

Annual Scope 1 carbon intensity of a sector. It is computed as a sector’s
total Scope 1 carbon emissions (in metric tons of CO;) divided by a
sector’s equity market value (in millions $) at the end of the year.

Dummy variable that equals one for the two sectors in the S&P 500
with the highest mean values of Scope 1/MV sector, and zero
otherwise. The sectors are listed in Table 2, panel B.

Defined as Scope 1/MV industry but for Scope 2 carbon emissions
instead of Scope 1 carbon emissions.

Dummy variable that equals one for a given firm-year if a firm
discloses to CDP data on the carbon emissions released during the
year, and zero otherwise.

Fraction of firms in the same SIC4 industry and year that discloses data
to CDP on the carbon emissions released during the year.

Dummy variable that equals one if the CH Negative Climate Change
News Index is above the median, and zero otherwise. CH Negative
Climate Change News Index is developed in Engle et al. (2020) and
captures the share of all news articles that are about “climate change”
and have been assigned to a “negative sentiment” category. As in
their paper, we use monthly averaged AR(1) innovation of the index.

OptionMetrics

OptionMetrics

OptionMetrics

CDP,
Compustat

CDP,
Compustat

CDP,
Compustat

CDP,
Compustat

CDP,

Compustat
CDP

CDP

Engle et al.
(2020)

(Continued)

1567

GZ0Z UOJBIN 6 UO Josn soisiels [eolewsyiely Aq 8E0798G/0+S |/€/PE/P10IHE/SH/WO0o Ao dlWwepedk//:SdjjY WOy pPapeojumoq



The Review of Financial Studies /v 34 n 3 2021

Table A.1

(Continued)

Variable Definition Source

Climate change Dummy variable that equals one if Google’s search volume index (SVI) ~ Google

SVI high for the search topic “Climate change” is above the median, and zero Trends
otherwise. We use monthly values of the index during our sample
period. The index is a relative index and takes values between 0 and
100. The highest number of searches in a month takes the value of
100, and values for other months are relative to this number.

Assets Total assets (Compustat data item AT) at the end of the year. Compustat
Winsorized at the 1% level.

Dividends/net Dividends (Compustat data item DVT) at the end of the year divided by =~ Compustat

income net income at the end of the year (Compustat data item NI).
Winsorized at the 1% level.

Debt/assets Sum of the book value of long-term debt (Compustat data item DLTT) Compustat
and the book value of current liabilities (DLC) at the end of the year
divided by total assets at the end of the year (Compustat data item
AT). Winsorized at the 1% level.

EBIT/assets Earnings before interest and taxes (Compustat data item EBIT) at the Compustat
end of the year divided by total assets at the end of the year
(Compustat data item AT). Winsorized at the 1% level.

CapEx/assets Capital expenditures at the end of the year (Compustat data item Compustat
CAPX) divided by total assets at the end of the year (Compustat data
item AT). Winsorized at the 1% level.

Book-to-market Difference between common equity (Compustat data item CEQ) and Compustat,
preferred stock capital (PSTK) at the end of the year divided by the CRSP
equity market value (MKVALT) at the end of the year. Winsorized at
the 1% level.

Returns Stock price at the end of the year (Compustat data item PRCC_F) CRSP
divided by the stock price at the end of the previous year, minus 1.

Winsorized at the 1% level.

Institutional Fraction of outstanding shares owned by institutional investors at the Thomson-

ownership end of the year. Winsorized at the 1% level. Reuters

CAPM beta Sensitivity of monthly stock returns to monthly S&P 500 returns. The Kenneth
variable is computed for each month with a rolling window of 60 French’s
months. For each firm 7, the variable corresponds to the B coefficient data library
in the regression Returns;; = constant + By Market Returnsy. We use
averaged values over the year. Winsorized at the 1% level.

Oil beta Sensitivity of monthly stock returns to monthly WTI oil returns after U.S. Energy
controlling for monthly market returns. The variable is computed for Information
each month with a rolling window of 60 months. For each firm 7, the Administra-
variable corresponds to the B, coefficient in the regression tion,
Returns;; = Constant + 1 Market returns; +f, Oil returns;. We use Kenneth
averaged values over the year. Winsorized at the 1% level. French’s

data library

Volatility Standard deviation of monthly stock returns, computed for each month CRSP
with a rolling window of 12 months. We use averaged values over the
year. Winsorized at the 1% level.

Time trend Linearly increasing variable that takes different integer values for each Self-
year in the sample, starting with zero. constructed

Effective tax rate  Cash taxes paid (Compustat data item TXPD) divided by current year Compustat
pretax income (Compustat data items PI). Pretax income is adjusted
for special items (Compustat data items SPI).

Post-Trump Dummy variable that equals one for all days after President Trump’s Self-

election election on November 9, 2016, and zero for all days before the constructed

election.
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