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We propose a theory in which each stock’s environmental, social, and governance (ESG) 

score plays two roles: (1) providing information about firm fundamentals and (2) affecting 

investor preferences. The solution to the investor’s portfolio problem is characterized by an 

ESG-efficient frontier, showing the highest attainable Sharpe ratio for each ESG level. The 

corresponding portfolios satisfy four-fund separation. Equilibrium asset prices are deter- 

mined by an ESG-adjusted capital asset pricing model, showing when ESG raises or lowers 

the required return. Combining several large data sets, we compute the empirical ESG- 

efficient frontier and show the costs and benefits of responsible investing. Finally, we test 

our theory’s predictions using proxies for E (carbon emissions), S, G, and overall ESG. 
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1. Introduction 

Asset owners and portfolio managers overseeing tril- 

lions of dollars seek to incorporate environmental, social, 

and governance (ESG) considerations into their investment 

process. 1 Meanwhile, investors have little guidance in how 

to incorporate ESG in portfolio choice and, worse, opinions 
1 For example, the 2018 Global Sustainable Investment Review reports 

over $30 trillion invested with explicit ESG goals as of the beginning 

of 2018. The 2017–2018 annual report of the Principles for Responsible 
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differ dramatically across academics and practitioners

about whether ESG will help or hurt their performance.

Some argue that ESG considerations must necessarily

lower expected returns (e.g., Hong and Kacperczyk, 2009 ),

and others argue that the “outperformance of ESG strate-

gies is beyond doubt” ( Financial Times, 2017 ). 2 

To reconcile these opposing views, we develop a the-

ory that illuminates both the potential costs and bene-

fits of ESG-based investing. Our theory explains how the

increasingly widespread adoption of ESG affects portfolio

choice and equilibrium asset prices. Further, we estimate

the magnitude of these effects empirically. 

Our conclusions are fivefold. (1) Theoretically, we show

that an investor optimally chooses a portfolio on the ESG-

efficient frontier. (2) The portfolios that span the frontier

are all combinations of the risk-free asset, the tangency

portfolio, the minimum-variance portfolio, and what we

call the ESG-tangency portfolio (four-fund separation). (3)

Equilibrium asset returns satisfy an ESG-adjusted capital

asset pricing model (CAPM), showing when higher ESG as-

sets have lower or higher equilibrium expected returns. (4)

We estimate the costs and benefits of responsible investing

via the empirical ESG-efficient frontier based on environ-

mental (E) and governance (G) measures and show how

ESG screens can have surprising effects. (5) We test the

theory’s equilibrium predictions using four ESG proxies,

providing a rationale for why certain ESG measures predict

returns positively (some aspects of governance) and others

negatively (non-sin stocks, a measure of S) or close to zero

(low carbon emissions, an example of E, and commercial

ESG measures). 

We consider three types of investors. Type-U (ESG-

unaware) investors are unaware of ESG scores and simply

seek to maximize their unconditional mean-variance util-

ity. Type-A (ESG-aware) investors also have mean-variance

preferences, but they use assets’ ESG scores to update

their views on risk and expected return. Type-M (ESG-

motivated) investors use ESG information and also have

preferences for high ESG scores. In other words, M in-

vestors seek a portfolio with an optimal trade-off between

a high expected return, low risk, and high average ESG

score. While optimizing across three characteristics (risk,

return, ESG) can seem challenging, we show that the in-

vestor’s problem can be reduced to a trade-off between

ESG and Sharpe ratio. In other words, risk and return can

be summarized by the Sharpe ratio. 

Specifically, for each level of ESG, we compute the

highest attainable Sharpe ratio (SR). We denote this con-

nection between ESG scores and the highest SR by the

ESG-SR frontier, as seen in Fig. 1 , Panel A. The ESG-SR

frontier is a useful way to illustrate the investment op-

portunity set when people care about risk, return, and

ESG. This frontier depends only on security characteristics;
Investments, a proponent of ESG supported by the United Nations, states 

that its signatories manage close to $90 trillion in assets. 
2 See also Edmans (2011 , p. 621), who finds that “certain socially re- 

sponsible investing (SRI) screens may improve investment returns,” and 

Nagy et al. (2015 , p. 3), who find that portfolios that incorporate ESG as 

an investment signal “outperformed the MSCI World Index over the sam- 

ple period while also increasing their ESG profile.”

573 
that is, it is independent of investor preferences. Hence, 

an investment staff can first mechanically compute the 

frontier and then the investment board can choose a 

point on the frontier based on the board’s preferences. 

Further, investors with the same information should agree 

on the frontier even if they prefer different portfolios on 

the frontier. This separation property resembles that of the 

standard mean-variance frontier, which also depends only 

on security characteristics, so investors can mechanically 

compute the frontier and then choose their portfolio’s 

placement on the frontier based on risk aversion. 

To understand why the ESG-SR frontier is hump- 

shaped, consider first the tangency portfolio known from 

the standard mean-variance frontier, shown in Fig. 1 , Panel 

B. This tangency portfolio has the highest SR among all 

portfolios, so its ESG score and SR define the peak in 

the ESG-SR frontier. Further, the ESG-SR frontier is hump- 

shaped because restricting portfolios to have any ESG score 

other than that of the tangency portfolio must yield a 

lower maximum SR, as illustrated in Panel B. 

Type-A investors choose the portfolio with the highest 

SR, that is, the tangency portfolio using ESG information 

in Fig. 1 , Panel A. Type-M investors have a preference for 

higher ESG, so they choose portfolios to the right of the 

tangency portfolio, on the ESG-efficient frontier. Choosing 

portfolios below or to the left of the efficient frontier is 

suboptimal because, in this case, the investor can improve 

one or both of the ESG score and the SR, without reduc- 

ing the other. Nevertheless, type-U investors may choose 

a portfolio below the frontier, because they compute the 

tangency portfolio while ignoring the security information 

contained in ESG scores (they condition on less informa- 

tion). Type-M investors with a small preference for ESG 

choose a portfolio just to the right of peak with nearly 

the maximum SR (higher than the SR achieved by type- 

U in the example depicted in Fig. 1 ), and type-M investors 

with strong preferences for ESG choose portfolios on the 

far right of the ESG-efficient frontier (possibly with lower 

Sharpe ratios than U investors). 

We also derive the equilibrium security prices and 

returns. We show that expected returns are given by an 

ESG-adjusted CAPM, as seen in Fig. 2 . When there are 

many type-U investors and when high ESG predicts high 

future profits, we show that high-ESG stocks deliver high 

expected returns. 3 This is because high-ESG stocks are 

profitable, yet their prices are not bid up by type-U in- 

vestors, leading to high future returns. When the economy 

has many type-A investors, then these investors bid up 

the prices of high-ESG stocks to reflect their expected 

profits, thus eliminating the connection between ESG 

and expected returns. Further, if the economy has many 

type-M investors, then high-ESG stocks actually deliver 

low expected returns, because ESG-motivated investors are 

willing to accept a lower return for a higher ESG portfolio. 
3 High-ESG firms are more profitable if such firms benefit from be- 

ing less wasteful, having more motivated employees, being better gov- 

erned, or having customers who are willing to pay a higher price for 

their products. See also the literature on corporate social responsibility, 

e.g., Baron (2009) , Benabou and Tirole (2010) , Hart and Zingales (2017) , 

and Oehmke and Opp (2020) . 
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Fig. 1. Environmental, social, and governance (ESG)–efficient frontier and relation to mean-variance frontier. Panel A shows the ESG-SR frontier; that is, 

the maximum Sharpe ratio (on the y-axis) that can be achieved for all portfolios with a given ESG score (on the x-axis). The peak of the ESG-SR frontier is 

the Sharpe ratio (SR) of the standard tangency portfolio. Investors who care about both SR and ESG should choose a frontier portfolio to the right of this 

portfolio, on the ESG-efficient frontier. Panel B shows the standard mean-variance frontier and the corresponding standard tangency portfolio (denoted “all 

assets”). The slope of the line from the risk-free rate to the tangency portfolio is the maximum SR. Panel B also shows the mean-variance frontier built 

exclusively for portfolios with a certain ESG score, s̄ . This frontier is a hyperbola that lies inside (i.e., to the right of) the standard hyperbola, and it has its 

own tangency portfolio with corresponding Sharpe ratio SR ( ̄s ) . This Sharpe ratio defines a point on the ESG-SR frontier: { ̄s , SR ( ̄s ) } . 

574 
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Fig. 2. Environmental, social, and governance–adjusted capital asset pricing model (ESG-CAPM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To illustrate how the theory can be used in practice and

investigate its testable implications, we consider empirical

proxies for E, S, G, and overall ESG. As a measure of E (i.e.,

how green a company is), we compute each company’s

carbon intensity. As a measure of S, we use the sin stock

indicator defined as in Hong and Kacperczyk (2009) . As a

measure of G, we compute how (un)aggressive a company

is in its accounting choices based on the accruals in the

financial statements ( Sloan, 1996 ). As a measure of overall

ESG, we use the aggregate ESG score produced by MSCI, a

leading provider of ESG ratings. 

We begin by empirically estimating the ESG-efficient

frontier for some of these ESG proxies. The shape of the

empirical frontier naturally depends on whether ESG pre-

dicts returns. Hence, we consider a frontier for a proxy that

predicts returns in our sample (G) and one that does not

(E). Given that G predicts returns, both benefits and costs

accrue to ESG investing using this proxy. Starting with the

benefit of ESG information , we find that the maximum SR

that incorporates this ESG proxy is about 12% higher than

the maximum SR that ignores such information (corre-

sponding to the vertical difference between the two tan-

gency portfolios in Fig. 1 , Panel A). For the cost of ESG

preferences , doubling the average ESG score relative to the

level that maximizes the SR leads to a reduction in SR of

only 3%. 

When we estimate the ESG-SR frontier using E (carbon),

we find little ex post improvement to the Sharpe ratio of

an investor who incorporates such information in her port-

folio decision. The frontier is still useful, however, because
575 
it shows the SR cost of tilting toward a less carbon inten- 

sive portfolio, a cost that is empirically small even for a 

significant reduction in carbon. In summary, these frontiers 

show a responsible investor’s opportunity set, quantifying 

the costs and benefits of using ESG in investing. 

We also study a common way of incorporating ESG into 

a portfolio: restricting the investment universe by remov- 

ing the assets with the weakest ESG scores. We find a 

seemingly counterintuitive result that investors who screen 

out assets with the worst ESG characteristics may build 

optimal portfolios that have lower aggregate ESG scores 

than portfolios of investors who do not impose ESG-type 

restrictions. This happens because unconstrained investors 

can short poor ESG assets to hedge out risks or to fi- 

nance larger positions in high-ESG assets. Not surprisingly, 

limiting the breadth of the investment universe detracts 

from financial outcomes as well. The ESG-SR frontier for 

investors who screen out poor ESG stocks is strictly domi- 

nated by the unconstrained frontier. 

Finally, we carry out a series of theory-motivated em- 

pirical tests that help explain how the four ESG proxies 

we consider correlate with returns. To help explain why 

our measure of G predicts returns, we first show that this 

aspect of governance positively predicts future profitabil- 

ity. We also observe some increase in investor demand for 

stocks of this type, but not to the point of making them 

more expensive compared with other stocks. In fact, stocks 

with attractive G trade at relatively cheaper Tobin’s q. So, 

G could predict returns in our sample because investors 

did not fully appreciate that G predicts profitability. Our 
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measure of S (not being a sin stock) predicts returns nega-

tively as shown by Hong and Kacperczyk (2009) , although

the statistical significance is limited in our tests. To under-

stand why, we show that this measure of S predicts profits

negatively and high S is associated with stronger investor

demand. Finally, we find that our two remaining proxies,

E (carbon intensity) and overall ESG (from MSCI), correlate

positively with investor demand and high valuations. These

proxies do not have a statistically significant link to returns

in our data, perhaps because of the much shorter sample

periods. 

We contribute to the literature both theoretically

and empirically. A growing theoretical literature on ESG

follows Merton (1987) and assumes that ESG-sensitive

investors refuse to hold certain assets. For example,

Heinkel et al. (2001) , Luo and Balvers (2017) , and

Zerbib (2020) show that, in equilibrium, such market seg-

mentation leads to higher expected returns to non-green

companies. 

Besides allowing such segmentation, we explicitly

model many assets characterized by ESG scores in addition

to the standard risk-return characteristics. 4 Based on this

general setting, we derive several interesting properties of

the solution to the portfolio problem with parallels to the

classic Markowitz solution, including the novel result that

the ESG-SR frontier characterizes the solution, under cer-

tain conditions. Further, we show when ESG should predict

returns positively or negatively in equilibrium. 

Empirically, our research bridges the gap between pa-

pers arguing that ESG hurts performance and those arriv-

ing at the opposite conclusion. The former group, based

on the segmentation theories, is supported by empiri-

cal literature showing that sin stocks (alcohol, tobacco,

and gaming, which can be seen as a poor S in ESG)

generate positive abnormal returns ( Hong and Kacper-

czyk, 2009 ). The sin premium parallels the finding of

Baker et al. (2018) that “green municipal bonds are is-

sued at a premium to otherwise similar ordinary bonds.”

Papers in the latter group show that stocks with good

governance (the G in ESG) generate positive abnormal re-

turns ( Sloan, 1996 ; Gompers et al., 2003 ) as do stocks

with higher employee satisfaction (part of the S of ESG)

( Edmans, 2011 ). Our model and empirical results help ex-

plain these opposing findings. We submit that ESG is a

positive return predictor if ESG is a positive predictor of

future firm profits and the value of ESG is not fully priced

in the market. Further, the model predicts that this rela-
4 In our model, ESG-motivated investors have a preference for stocks 

with high ESG, but, mathematically, these investors’ utility could in prin- 

ciple capture a preference for any security characteristic. The only other 

models of this form with many assets that we are aware of are provided 

by Fama and French (2007) , who consider a model of investor “taste”, 

Baker et al. (2018) , who consider a model in which some investors pre- 

fer green bonds, and Pastor et al. (2019) and Zerbib (2020) , who con- 

sider ESG scores. These papers assume that the relevant characteristic, 

e.g., ESG, has a linear effect on utility, essentially changing expected re- 

turns, whereas we consider more general ESG preferences. Further, these 

papers do not derive the ESG-SR frontier or our other theoretical results, 

except the finding that the preferred assets could have lower expected re- 

turns in equilibrium. See also Gollier and Puget (2014) and Friedman and 

Heinle (2016) , who consider a single risky asset to study issues related to 

corporate engagement of responsible investors. 

576 
tion can be weakened with ESG becoming a neutral re- 

turn predictor when most investors see the value in ESG 

and even flips sign, with ESG becoming a negative predic- 

tor of returns, when investors are willing to accept lower 

returns for more responsible stocks. So, according to our 

model, the results of Hong and Kacperczyk (2009) arise 

because their measure of sin stocks (belonging to the in- 

dustries related to alcohol, tobacco, and gaming) is asso- 

ciated with low investor demand, while the ESG measures 

of Gompers et al. (2003) and Edmans (2011) are related to 

higher firm profits in a way that the market has not fully 

appreciated. 5 

Our paper is also linked to the economic theories of 

discrimination: taste-based discrimination ( Becker, 1957 ) 

and statistical discrimination ( Phelps, 1972 ). Indeed, ESG 

scores play a dual role in our model because ESG affects 

investor preferences both directly (a kind of taste-based 

discrimination) and indirectly because ESG scores are in- 

formative of risk and expected returns (a form of statisti- 

cal discrimination). In equilibrium, the interplay between 

these two dimensions allows for a variety of potential out- 

comes. This flexibility is important, because the empirical 

literature suggests that the link between ESG and returns 

is not trivial. Certain ESG measures predict returns posi- 

tively while others predict negatively, which highlights the 

need for a theoretical framework that allows for a similar 

flexibility in outcomes, with testable predictions of when 

each applies. 

2. Portfolio choice with ESG: the ESG-efficient frontier 

2.1. Model: Markowitz meets sustainability goals 

We examine an investor’s problem of choosing a port- 

folio of n risky assets and a risk-free security. The risk- 

free return is r f , and the risky assets have excess re- 

turns collected in the vector of random variables denoted 

by r = ( r 1 , .., r n ) ′ . The assets have an ESG scores given by 

s = ( s 1 , .., s n ) ′ . 
We consider three types of investors. Type-U investors 

are uninterested or unaware of ESG scores. They take ex- 

pected excess returns to be E(r) with risk given by the 

variance-covariance matrix, var (r) . Type-A (ESG-aware) in- 

vestors use ESG scores to update their views on risk and 

expected return. They use assets’ expected excess return, 

μ = E(r| s ) , conditional on the ESG information s , and the 

conditional variance-covariance matrix of excess returns 

� = var (r| s ) . 6 Type-M (ESG-motivated) investors use ESG 

information and also have preferences for high ESG scores. 

The portfolio problem for U and A investors has the stan- 
5 Bebchuk et al. (2013) find that the return predictability associated 

with the governance indicator of Gompers et al. (2003) has disappeared, 

conjecturing an explanation based on investor learning. We find that the 

governance metric of Sloan (1996) based on accruals has continued to 

predict returns post-publication. 
6 An active debate is ongoing about whether ESG has an effect on 

valuations and, even more so, whether it is relevant to future risks or 

returns. For example, Flammer (2015) and Kruger (2015) provide sup- 

portive evidence for valuations and returns, and Dunn et al. (2018) , 

Ilhan et al. (2018) , and Hoepner et al. (2019) show that ESG correlates 

with risks. 
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dard Markowitz solution, so we focus here on the solution

for type-M investors. Section 3 discusses equilibrium asset

prices with all three types of investors. 

Investor M starts with a wealth of W and chooses a

portfolio of risky assets, x = ( x 1 , .., x n ) ′ , where x i is the

fraction of capital invested in security i or, said differently,

the investor buys x i W dollars’ worth of security i . The in-

vestor’s utility depends on her future wealth and the ESG

characteristics of the portfolio. Given her portfolio choice,

the investor’s future wealth is ̂ 

 = W 

(
1 + r f + x ′ r 

)
. (1)

The investor seeks to maximize her utility U over

final wealth W and average ESG score, s̄ = 

x ′ s 
x ′ 1 , given the

extended mean-variance framework 

 = E 
(̂ W | s )− γ̄

2 

V ar 
(̂ W | s )+ W f ( ̄s ) . (2)

Here, γ̄ is the absolute risk-aversion parameter and

f : R → R ∪ { −∞ } is the ESG preference function. 7 The ESG

preference function depends on the average ESG score

among the risky asset positions (i.e., s̄ is the weighted sum

of ESG scores, scaled by the total position in risky assets,

x ′ 1 ), meaning that the investor gets no ESG utility from

investing in the risk-free asset. We consider more general

ESG preference functions in Section 2.4 . The overall utility

can be written as 

 = W 

(
1 + r f + x ′ μ

)
− γ̄

2 

W 

2 x ′ �x + W f 

(
x ′ s 
x ′ 1 

)
= W 

(
1 + r f + x ′ μ − γ

2 

x ′ �x + f 

(
x ′ s 
x ′ 1 

))
, (3)

where γ = γ̄W is the relative risk aversion. Hence, by

dropping constant terms, the utility maximization problem

is 

max 
x ∈ X 

(
x ′ μ − γ

2 

x ′ �x + f 

(
x ′ s 
x ′ 1 

))
, (4)

where the set of feasible portfolios is X = { x ∈ R 

n | x ′ 1 > 0 } ,
that is, all long-biased portfolios (generalized sets of al-

lowed portfolios are discussed in Section 2.3 ). We consider

portfolios that invest at least as much long as short be-

cause defining the overall ESG characteristic for a portfolio

that is short overall is difficult, but, in principle, the frame-

work can be applied more generally. 

2.2. Solution: ESG-SR frontier 

We now solve an ESG-motivated investor’s portfolio

problem. Because the objective function depends on the

ESG scores, s , the optimal portfolio depends on these

scores. 

In a standard mean-variance analysis, the investor op-

timally combines the tangency portfolio with the risk-free
7 Economists generally hesitate to add arguments to the utility function 

because this flexibility means that almost any outcome can be justified, 

but, here, we simply formalize the intentions of investors who control 

trillions of dollars, as discussed in the Introduction. We allow that the 

ESG preference function takes the value −∞ to capture screens, as dis- 

cussed in Section 2.3 . 
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security. The tangency portfolio is the portfolio that max- 

imizes the Sharpe ratio, namely, the expected excess re- 

turn divided by the standard deviation of excess returns. To 

generalize this idea, we consider the maximum SR for each 

level of ESG score . The maximum SR that can be achieved 

with an ESG score of s̄ is denoted the ESG-SR frontier , 

SR ( ̄s ) : 

SR ( ̄s ) = max 
x ∈ X 

s . t . s̄ = 

x ′ s 
x ′ 1 

(
x ′ μ√ 

x ′ �x 

)
= max 

x 
s . t . x ′ 1 = 1 

and x ′ s = s̄ 

(
x ′ μ√ 

x ′ �x 

)
. 

(5) 

In order to use this definition of the highest Sharpe for 

each ESG level, we first rewrite the utility maximization 

problem Eq. (4) as 

max 
s̄ 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

max 
σ

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

max 
x ∈ X 

s . t . s̄ = 

x ′ s 
x ′ 1 

σ 2 = x ′ �x 

(
x ′ μ − γ

2 

σ 2 + f ( ̄s ) 

)
⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (6) 

This expression means that the investor’s problem can 

be thought of as first choosing the best portfolio given a 

level of risk σ and an ESG score s̄ and then maximizing 

over σ and s̄ . The former problem is solved by choosing 

the portfolio with the highest SR for the given ESG score (a 

more detailed proof is given in the Appendix ), which yields 

max 
s̄ 

[ 
max 

σ

{ 
SR ( ̄s ) σ − γ

2 

σ 2 + f ( ̄s ) 

} ] 
. (7) 

The optimal level of risk is given by σ = SR ( ̄s ) /γ . In- 

serting this risk level and simplifying the expression re- 

sults in Proposition 1 . 

Proposition 1 (ESG-SR trade-off). The investor should choose 

her average ESG score s̄ to maximize the following function of 

the squared Sharpe ratio and the ESG preference function f : 

max 
s̄ 

[
( SR ( ̄s ) ) 

2 + 2 γ f ( ̄s ) 
]
. (8) 

This proposition shows how investors optimally trade 

off ESG and Sharpe ratios. Not surprisingly, ESG affects the 

optimal portfolio choice, given that ESG is in the utility 

function, but the interesting result here is that we can an- 

alyze this trade-off using a part that depends only on se- 

curities [the ESG-SR frontier, SR ( ̄s ) ] and another part that 

depends only on preferences [2 γ f ( ̄s ) ]. In other words, just 

like the standard Markowitz theory is powerful because 

the mean-variance frontier can be computed independent 

of preference parameters and then decisions about what 

portfolio to pick are based on risk aversion, the ESG- 

SR frontier can be computed independent of preferences 

and then the investor can decide in the end where on 

the frontier to place herself. Put differently, the ESG-SR 

frontier summarizes all security-relevant information. The 

investor’s problem is to first place herself on the ESG- 

SR frontier and then decide on the amount of risk. This 

method works because investors care about the average 
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8 When π = 0 , portfolio choice simplifies to the traditional mean- 

variance optimization. 
ESG, which does not change when the investor chooses the

risk level in the second step by choosing her cash hold-

ing. If investors care about total ESG, x ′ s , instead of average

ESG, then the investor’s problem cannot be summarized as

the ESG-SR frontier, which also shows that our frontier re-

sults are not trivial. 

Understanding the ESG-SR frontier shows how differ-

ences in risk aversion and differences in ESG preferences

can be distinguished. If a group of investors have no direct

preferences for ESG ( f ≡ 0 ) but differ in their risk aver-

sion γ , then all these investors should invest in the same

portfolio of risky assets (i.e., with the same Sharpe ratio

and average ESG score), but the more risk tolerant should

put a larger fraction of their wealth in this portfolio (i.e.,

own less cash instruments). If a group of investors have

the same risk aversion but differ in their ESG preferences,

then investors with stronger ESG preferences should buy

a portfolio with lower SR, but higher average ESG score.

Interaction effects also exist. If a group of investors care

equally about ESG but differ in their risk aversion, then

an investor with higher risk aversion not only puts more

money in the risk-free asset, but she also tilts her portfolio

toward higher ESG and lower SR. Mathematically, this be-

havior is due to the fact that the second term in Eq. (8) is

γ f ( ̄s ) , and, economically, this interaction is due to the fact

that SR matters less when an investor is more risk averse

(because she knows that she will take less risk anyway), so,

in relative terms, ESG becomes more important. More gen-

erally, observing an investor’s portfolio of risky assets and

its placement on the ESG-SR frontier is revelatory about

γ f ( ̄s ) ; observing the investor’s cash position (or leverage),

about the risk aversion γ . 

We next characterize how the maximum Sharpe ra-

tio depends on the ESG score. We use the notation c ab =
a ′ �−1 b ∈ R for any vectors a, b ∈ R 

n . 

Proposition 2 (ESG-SR frontier). The maximum Sharpe ratio,

SR ( ̄s ) , that can be achieved with an ESG score of s̄ is 

SR ( ̄s ) = 

√ 

c μμ −
(
c sμ − s̄ c 1 μ

)2 

c ss − 2 ̄s c 1 s + s̄ 2 c 11 

. (9)

The maximum Sharpe ratio across all portfolios is

SR ( s ∗) = 

√ 

c μμ, which is attained with an ESG score of s ∗ =
c sμ/ c 1 μ. Increasing the ESG score locally around s ∗ leads to

nearly the same Sharpe ratio, SR ( s ∗ + �) = SR ( s ∗) + o(�) ,

because the first-order effect is zero, dSR ( s ∗) 
ds 

= 0 . 

We next consider the nature of the optimal portfolio

weights for an ESG-aware investor. 

Proposition 3 (four-fund separation). Given an average ESG

score s̄ , the optimal portfolio is 

x = 

1 

γ
�−1 ( μ + π( s − 1 ̄s ) ) (10)

as long as x ′ 1 > 0 , where 

π = 

c 1 μs̄ − c sμ

c ss − 2 c 1 s ̄s + c 11 ̄s 2 
. (11)

The optimal portfolio is therefore a combination of

the risk-free asset, the tangency portfolio, �−1 μ, the
578 
minimum-variance portfolio, �−1 1 , and the ESG-tangency 

portfolio, �−1 s . 

The optimal portfolio looks the same as the standard 

Markowitz solution, except that the expected excess re- 

turns μ have been adjusted. In other words, the optimal 

portfolio can be found as follows. The investor first com- 

pute ESG-adjusted expected returns, μ + π( s − 1 ̄s ) , in the 

sense that each stock’s expected excess return is increased 

if its ESG score s i is above the desired average score s̄ ; oth- 

erwise, it is lowered. The amount of adjustment depends 

on the scaling parameter π , or the strength of the pref- 

erence for ESG. 8 Next, the investor compute the optimal 

portfolio found in the standard way, that is, multiplying by 
1 
γ �−1 . Therefore, all investors, regardless of their risk aver- 

sion and ESG preferences, should choose a combination of 

four portfolios (or funds): the risk-free asset, the standard 

tangency portfolio, the minimum variance portfolio, and 

the portfolio that we call the ESG-tangency portfolio . The 

ESG-tangency portfolio is the tangency portfolio if we re- 

place the expected excess returns with the ESG scores. 

2.3. Example: how investors choose portfolios using the 

ESG-SR frontier 

Fig. 3 , Panel A, illustrates how the ESG-motivated in- 

vestor M chooses her portfolio using the ESG–Sharpe ratio 

frontier. For every ESG level, she finds the portfolio with 

the highest SR. One way to think about this step is that 

the investor computes a standard mean-variance frontier 

for all portfolios with this level of ESG as illustrated in 

Fig. 1 , Panel B. Then, the investor computes the maximum 

Sharpe ratio as the slope of the line that goes from the 

risk-free security to the tangency portfolio (again, based 

only on portfolios with this ESG level). The investor col- 

lects all these Sharpe ratios and plots them against the ESG 

levels as seen in Fig. 3 , Panel A. The Appendix further ex- 

plains the connection between the standard mean-variance 

frontier and the ESG-SR frontier. 

Panel A also shows investor M’s indifference curves. 

These curves slope down because investor M likes high 

Sharpe ratios and high ESG scores and can trade off one 

versus the other to remain indifferent about all portfolios 

on each indifference curve. Investor M’s utility is maxi- 

mized at the point where her indifference curve is tangent 

to the ESG-SR frontier. This solution is not the global maxi- 

mum of the Sharpe ratio, as the investor optimally chooses 

a higher level of ESG to satisfy her nonfinancial preference 

for ESG. 

This solution contrasts with that of our ESG-aware in- 

vestor A, depicted in Fig. 3 , Panel B. Investor A also con- 

siders ESG information to build a better forecast of returns 

but does not have any direct (nonfinancial) preference for 

ESG. That is, he would tilt toward portfolios with high ESG 

(or, for that matter, with low ESG) only in as much as they 

help maximize the investment outcome. This means that 

the investor has horizontal indifference curves, illustrat- 

ing that his preference depends only on the Sharpe ratio. 
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Fig. 3. ESG–efficient frontier and investor indifference curves. This figure shows examples of an ESG–Sharpe ratio frontier (solid line) and an investor’s 

indifference curves (dashed lines). Panel A draws an ESG-motivated investor’s indifference curves. This type-M investor’s utility increases in both the 

Sharpe ratio and the ESG score of her portfolio, yielding a trade-off illustrated by the downward-sloping indifference curves. Panel B draws an ESG-aware 

investor’s indifference curves, which are horizontal because this type of investor does not derive direct utility from ESG. 

579 
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We can also imagine that this investor considers the ESG–

Sharpe ratio frontier but would always choose the portfolio

with the highest possible Sharpe. 

Finally, investor U solves a standard mean-variance op-

timization just like investor A, except that U computes po-

tentially different estimates of risk and expected returns.

We illustrate this when we estimate the empirical ESG-SR

frontier in Section 4.2 . 

2.4. Generalized ESG preferences 

Some investors use screens to help implement their

ESG views. For example, an investor can screen out any

stock with a low ESG score, for example, s i < 0 . 2 . The

previous analysis naturally holds for the subset of non-

screened stocks. We can also incorporate such screens

more directly by changing the set of allowed portfolios to

X = { x ∈ R 

n | x ′ 1 > 0 , ∀ i x i = 0 if s i < s ∗} . Zerbib (2020) also

models screens combined with ESG preferences and em-

pirically analyzes their effects. 

Some investors prefer to exclude short positions, which

can be captured by X = { x ∈ R 

n + } , or both short posi-

tions and screened stocks X = { x ∈ R 

n + |∀ i x i = 0 if s i < s ∗} .
Investors can achieve a better risk-return trade-off if they

allow shorting, and shorting low-ESG stocks could be con-

sistent with ESG preferences. 9 Hence, investors can require

that their position in low-ESG stocks be zero or negative,

that is, X = { x ∈ R 

n | x ′ 1 > 0 , ∀ i x i ≤ 0 if s i < s ∗} . For any of

these restrictions, we can use the following result because

all these portfolio sets are cone-shaped. We say that X is

cone-shaped if x ∈ X implies that ax ∈ X for all a > 0 (said

differently, X depends only on x/x ′ 1 ). 

Proposition 4 (ESG-SR frontier with screens). The conclusion

of Proposition 1 continues to hold for any cone-shaped X. 10 

We can consider even more general ESG utility func-

tions of the form e ( x, s ) : X × R 

n → R ∪ { −∞ } , where X ⊆
R 

n is a cone-shaped set of allowed portfolios. We assume

that the ESG utility function is homogeneous of degree

zero with respect to portfolios, that is, e ( a x, s ) = e ( x, s ) for

any a > 0 . This is a natural assumption because it means

that the cash holding does not affect the ESG utility. For

example, the portfolio x = ( 0 . 2 , 0 . 2 ) means that 20% of as-

sets are put in each risky asset and the rest, 60%, is in cash,

and the portfolio 2 x = ( 0 . 4 , 0 . 4 ) means that twice as much

money is put in the same portfolio of risky assets, leaving

only 20% in cash. Homogeneity means that the same ESG

utility results because the risky portfolio is the same. This

homogeneity is what allows the investor to first focus on

the optimal combination of the Sharpe ratio and portfolio-

level ESG score and then decide on the amount of risk. 

One interesting example is e ( x, s ) = f ( x ′ s √ 

x ′ �x 
) , where

the investor cares about how much ESG she gets per unit
9 In the approach based on the average ESG score, the optimal port- 

folio can include short positions, and this approach gives the investor 

credit if the short positions have lower ESG scores than the long ones. 

Fitzgibbons et al. (2018) argue that ESG-sensitive investors should be will- 

ing to short low-ESG stocks. 
10 The definition [Eq. (4)] of the SR function must depend on the same 

set of allowed portfolios, X . 
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of risk. This specification has the advantage that it also 

works for long-short portfolios with x ′ 1 = 0 and it retains 

much of the tractability of the specification considered ear- 

lier. 

The generalized ESG preference function can capture 

screens by having e ( x, s ) = −∞ for all portfolios, where 

x i 
 = 0 for any security with s i < 0 . 2 . A screen can be seen 

as an extreme version of nonlinear preferences across the 

stocks’ ESG scores. In other words, an investor perhaps 

does not view a portfolio of three stocks with ESG scores 

of (0.1, 0.8, 0.9) the same as one with (0.6, 0.6, 0.6) even 

if they have the same average, because the former has one 

very low-ESG stock. Instead of capturing this idea with a 

screen, a less extreme (and still tractable) version would be 

e ( x, s ) = e 1 
x ′ s 
x ′ 1 − e 2 

x ′ diag ( 1 
s 1 

, ... , 1 
s n 

) x 

( x ′ 1 ) 2 
, where e 1 , e 2 ∈ R are pa- 

rameters. Here, the utility is more penalized if the investor 

has a stock with an ESG score close to zero. In any event, 

the investor can still think in terms of an ESG-SR frontier 

as seen from Proposition 5 . 

Proposition 5 (generalized ESG-SR frontier). If the investor 

has generalized ESG preferences e ( x, s ) , then the investor’s 

problem is 

max 
ē 

[
( SR ( ̄e ) ) 

2 

2 γ
+ ē 

]
, (12) 

where SR ( ̄e ) is the maximum Sharpe ratio for a given level of 

ESG utility: 

SR ( ̄e ) = max 
x ∈ X 

s . t . ē = e ( x, s ) 

(
x ′ μ√ 

x ′ �x 

)
. (13) 

Finally, the theory can also work if each security has 

a multidimensional ESG score (e.g., one score for environ- 

mental concerns, another for social, and a third for gover- 

nance, with investors having preferences over such combi- 

nations). 

Having characterized the solution to the ESG-aware 

portfolio problem in a variety of cases, we note that such a 

solution exists under certain conditions. 11 Instead of going 

into theoretical details, the empirical Section 4.2 shows the 

practical applicability of the framework. 

3. Equilibrium asset pricing with ESG 

3.1. ESG-adjusted CAPM 

Having solved the Markowitz problem with ESG in- 

vestors, we next endogenously derive security prices and 

returns. We consider an overlapping-generations (OLG) 

economy in which, at time t , security prices are p t = 

( p 1 t , .., p 
n 
t ) 

′ and excess returns from time t − 1 to t are 

r t = ( r 1 t , .., r 
n 
t ) 

′ . The exogenous variables are the ESG scores 
11 A sufficient condition for existence is that the ESG preference function 

f is continuous, we consider a compact space of ESG levels, s̄ ∈ [ s min , s max ] , 

and for all such ESG levels, the portfolio x in Eq. (10) satisfies x ′ 1 > 0 . In 

this case, for any s̄ , an optimal portfolio is given in Eq. (10) with a result- 

ing objective function Eq. (8) that is continuous in s̄ , and any continuous 

function attains its maximum on a compact space. 
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s , the risk-free rate r f , the security dividend payoffs v t =
( v 1 t , .., v n t ) 

′ , and the shares outstanding of each stock, nor-

malized to one. We denote the total market dividend by

v m 

t = v 1 t + . . . + v n t and assume that dividends are indepen-

dent and identically distributed (i.i.d.) over time. We model

the informational value of ESG scores as E( v t | s ) = ˆ μ +
λ( s − s m ) , where s m = 

∑ 

i m 

i s i is the weighted-average ESG

score of the market portfolio, m 

i = p i / 
∑ 

j p 
j is the weight

of the market portfolio in stock i , and the parameter λ ∈ R

determines how informative ESG scores are for future prof-

its. A positive λ means that more ESG friendly firms are

also more profitable on average, and a negative λ has the

reverse interpretation. 

Recall that the economy has three types of investors.

Type-U investors do not use ESG information at all: They

have no preference for ESG (i.e., their ESG preference func-

tion is f U ≡ 0) , and they ignore the informational value of

ESG signals s , assuming that the best forecast of future div-

idends is the unconditional mean ˆ μ = E(v ) and payoff risk

is taken to be ˆ � = var (v ) . ESG-aware type-A investors also

do not enjoy ESG utility ( f A ≡ 0) , but they exploit ESG to

update their views on securities, using μ̄ = E(v | s ) as the

expected payoff and �̄ = var (v | s ) to capture payoff risk.

ESG-motivated type-M investors use ESG information and

have a preference for a high average ESG score. A new gen-

eration of investors appears each time period, with type-U

investors born with wealth W 

U and similarly for types A

and M, and the aggregate wealth is W = W 

U + W 

A + W 

M .

Investors live for one period, and market clearing requires

that the total demand for shares from all young investors

equals the shares outstanding. 

We are looking for equilibrium prices p t and excess

returns r t and start by noticing that these are related as

r i t = 

v i t + p i t 
p i 

t−1 

− 1 − r f . (14)

We focus on the steady-state equilibrium in which

prices (and expected returns) are constant, p t = p for all

t . In such an equilibrium, excess returns are simply given

by r i t = 

v i t 
p i 

− r f , and the return variance is driven by divi-

dend risk as prices are constant. Such a steady-state equi-

librium exists because, over time, dividends are i.i.d., ESG

scores are constant, and the wealth of different investor

types is constant. If we did not make these assumptions,

each security price would depend on its current ESG score

and the current investor ESG sentiment (as summarized

by the total πt from Proposition 3 ), leading to interesting

dynamics. For example, a security’s return variance would

suddenly also depend on the risk of changes in the over-

all ESG investor sentiment, changes in the stock’s own ESG

score, changes in how ESG predicts dividends (e.g., because

of changes in customer demand for green products), and

the covariances of all shocks. Here we focus on the steady

state for simplicity. 12 

Let us consider equilibrium implications of the model,

starting with the simplest cases in which all investors are
12 Pastor et al. (2019) consider a simplified three-period model with ESG 

risk, deriving an interesting two-factor model in which required returns 

depend on the covariance with the market and an ESG factor. 
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of the same type. If all investors ignore ESG (i.e., all are 

type-U), then we are back to a standard CAPM equilib- 

rium. All investors hold the unconditional tangency portfo- 

lio, that is, the portfolio that maximizes SR relative to their 

information set, which ignores ESG. The tangency port- 

folio equals the market portfolio, and each security’s ex- 

pected excess return is driven by its unconditional mar- 

ket beta, β i = 

cov ( r i t ,r 
m 
t ) 

var ( r m t ) 
. What is new here is that a (small) 

investor who understands that ESG scores are informa- 

tive can exploit this insight. Proposition 6 characterizes the 

equilibrium. 

Proposition 6 . If all investors are ESG-unaware, i.e. , of type-U 

( W 

A = W 

M = 0) , then any security i has steady-state equilib- 

rium price 

p i = 

ˆ μi − γ
W 

cov 
(
v i , v m 

)
r f 

. (15) 

Unconditional expected excess return obeys the standard 

unconditional CAPM: 

E 
(
r i t 
)

= β i E ( r m 

t ) , (16) 

but conditional expected returns are given by 

E 
(
r i t | s 
)

= β i E ( r m 

t ) + λ
s i − s m 

p i 
. (17) 

This proposition provides several intuitive results. First, 

the price [Eq. (15)] of any firm’s equity is given by 

its expected cash flow payoff ( ̂  μi ) less a risk premium 

[ 
γ
W 

cov ( v i , v m ) ], discounted by the risk-free rate. Second, 

expected excess returns [Eq. (16)] are driven by market be- 

tas from the perspective of an investor who ignores ESG 

scores. Third, from the perspective of an investor who uses 

ESG scores, Eq. (17) shows that stocks returns have al- 

phas relative to the CAPM that depend linearly on ESG. 

If a high-ESG score is indicative of a high future profit, 

that is, if λ > 0 , then stocks with ESG scores above aver- 

age have higher conditional expected returns than those 

with below-average ESG scores. This is in line with the 

empirical findings such as those of Gompers et al. (2003) , 

who show that an ESG-type metric (governance) earns 

CAPM alphas. 13 Market prices adjust when more investors 

are aware that this type of information could be relevant. 

At the extreme, all market participants incorporate it into 

their decision, as in the case that we consider next. 

Suppose that all investors use ESG signals, but with- 

out ESG preferences (i.e., all are ESG-aware of type-A). In 

this case, we get a conditional CAPM equilibrium, and in- 

vestors can no longer profit from using the informational 

value of ESG scores because this information is already in- 

corporated into prices. This theoretical prediction is in line 

with the empirical finding of Bebchuk et al. (2013) , who ar- 

gue that market participants have gradually learned about 

the usefulness of governance and have impounded it into 

prices. Consequently, they show that the measures from 

Gompers et al. (2003) do not predict abnormal returns 

out-of-sample. 
13 The model is also consistent with λ < 0, when ESG is in conflict with 

financial outcomes (e.g., when corporations engage in charity). 
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Finally, suppose that all investors use ESG in their sig-

nals and in their identical ESG preferences (i.e., all type-M).

Such ESG preferences change the equilibrium in an inter-

esting way. To derive this equilibrium, we first note that

returns [Eq. (14)] can be written in vector form as 

r t = diag 

(
1 

p i 

)
v t − r f , (18)

where diag ( 1 
p i 

) means the diagonal matrix with elements

( 1 
p 1 

, . . . , 1 
p n 

) . Any investor clearly wants to maximize the

SR for the chosen ESG score. Further, in equilibrium,

all investors must choose the market portfolio, which

must therefore maximize for SR among all portfolios

with an ESG equal to that of the market, s m . Based on

Proposition 3 , any investor buys the following portfolio: 

x = 

1 

γ
diag 
(

p i 
)
�̄−1 diag 

(
p i 
)

×
(

diag 

(
1 

p i 

)
μ̄ − r f + π( s − 1 s m ) 

)
. (19)

The total wealth invested in each stock is W x , where

 is the aggregate wealth, and the total dollar supply

is p because shares outstanding are normalized to one.

Hence, the equilibrium condition is p = W x . (We derive

the equilibrium in the Appendix .) All investors hold the

market portfolio in this equilibrium with only type-M

investors (everyone cannot be more ESG friendly than

the average). Nevertheless, a security’s required return is

affected by its ESG as well as its conditional market beta,

β̄ i = 

cov ( r i t ,r 
m 
t | s ) 

var ( r m t | s ) , as seen in Proposition 7 . 

Proposition 7 (ESG-CAPM). If all investors are ESG-motivated

of type-M ( W 

U = W 

A = 0) , then any security i has

equilibrium price 

p i = 

ˆ μi + λ
(
s i − s m 

)
− γ

W 

cov ( v i , v m | s ) 
r f − π

(
s i − s m 

) , (20)

where s m is the ESG score of the market portfolio and the cor-

responding π is given by Eq. (11) . The equilibrium conditional

expected excess return is given by 

E(r i t | s ) = β̄ i E(r m 

t | s ) − π
(
s i − s m 

)
. (21)

If all investors are ESG-aware of type-A ( W 

U = W 

M = 0) ,

the same conclusions hold with π = 0 . 

This proposition shows that equilibrium asset prices are

different when all investors derive utility from ESG (type-

M) relative to an economy dominated by investors who

ignore ESG (as in Proposition 6 ). With such ESG-motivated

investors, the price of any firm’s equity depends on its ESG

score in two ways. First, the ESG score affects the expected

cash flow as seen in the numerator of Eq. (20) . Second,

a higher ESG score lowers the discount rate used in the

denominator, thus increasing the price. Turning to the

implications for returns in Eq. (21) , the firm’s cost of cap-

ital is given by the standard conditional CAPM expression

[ ̄β i E(r m 

t | s ) ] adjusted for whether the ESG score is above or

below that of the market. In other words, the firm’s cost

of capital is lower if its ESG score is higher or, equiva-

lently, the firm can issue shares at higher prices. This low
582 
cost of capital encourages high-ESG firms to make real 

investments because, using this low discount rate, more 

projects would have a positive net present value. While 

we do not explicitly model firm decisions to invest in ESG, 

this insight helps explain why firms can choose to increase 

their corporate investment in ESG or why firms with a 

stronger ESG profile could realize higher growth than firms 

with relatively weaker ESG. Recent papers emphasizing 

the effect of ESG investment on corporate decisions in- 

clude Albuquerque et al. (2018) , Landier and Lovo (2020) , 

Oehmke and Opp (2020) , and Pastor et al. (2019) . 

If all types of investors exist, then several things can 

happen. If a security has a higher ESG score, then, ev- 

erything else equal, its expected return can be higher or 

lower. A higher ESG score increases the demand for the 

stock from type-M investors, leading to a higher price and, 

therefore, a lower required return, as seen in Proposition 7 . 

Companies with poor ESG scores that are down-weighted 

by type-M investors would have lower prices and higher 

cost of capital. 

Furthermore, the force that can increase the expected 

return is that the higher ESG could be a favorable signal 

of firm fundamentals, and, if many type-U investors ignore 

this, the fundamental signal perhaps would not be fully 

reflected in the price, as seen in Proposition 6 . Whether 

favorable ESG characteristics signal good profitability (e.g., 

good governance leading to a well-run company or a social 

company with happy productive employees) or low prof- 

itability (e.g., a company spending shareholders’ money on 

charities that employees and customers do not appreciate) 

is an empirical question; that is, the sign of λ is an empir- 

ical question. Further, it is an empirical question whether 

the force of Proposition 6 or 7 is stronger, that is, the ex- 

tent to which ESG information is incorporated into prices 

and the extent to which ESG-investors’ demand pressure 

affects required returns. 

Finally, we can consider the effect of an increasing 

adoption of ESG investing over time (i.e., an increasing 

fraction of ESG-motivated investors or a stronger ESG 

preference among them). A future increase in ESG in- 

vesting would lead to higher prices for high-ESG stocks, 

corresponding to a larger π in the model (as seen in 

Proposition 7 ). If these flows are unexpected (or not fully 

captured in the price for other reasons), then high-ESG 

stocks would experience a return boost during the period 

of this repricing of ESG. If these flows are expected, then 

expected returns should not be affected. 

3.2. Testable predictions of the theory 

To summarize, the theory makes the following predic- 

tions: 

1. The trade-off between risk, expected returns, and ESG 

can be summarized by the ESG-SR frontier. 

2. Using ESG information can increase the investor’s SR by 

improving the ESG-SR frontier. 

3. Given the investor’s information set, investors with 

stronger ESG preferences (or higher risk aversion) 

choose portfolios with higher ESG scores and 

(marginally) lower SR. 
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4. Even investors with preferences for the average ESG

score optimally choose portfolios with positions (long

or short) in almost any security (as opposed to standard

models of taste-based discrimination that imply stricter

segregation). 

5. ESG investors choose a combination of four portfo-

lios (or funds): the risk-free asset, the standard tan-

gency portfolio, the minimum-variance portfolio, and

the ESG-tangency portfolio. 

6. A security with a higher ESG score has 

a. A higher demand from ESG investors, which lowers

the expected return; 

b. Different expected future profits, which can increase

the expected return if the market underreacts to

this predictability of fundamentals; and 

c. Stronger flows from investors, which can increase

the price in the short term. 

Many of these predictions are qualitative in nature, but

it is interesting to considering the quantitative effects of

ESG on returns (predictions 6.a and 6.b). Starting with

6.b (corresponding to Proposition 6 ), we empirically esti-

mate how different ESG measures predict future earnings

(see Section 4.4). This provides an estimate of λ in the

model. Specifically, we run a regression of the form 

v i t 
A i 

t−1 

=
λs i 

t−1 
+ controls + ε i t , where A 

i 
t−1 

is assets. We empirically

scale earnings by assets (instead of just using earnings

as in the model) so that our variables are more station-

ary, but we can link the results to the model as follows.

If this predictability is not already incorporated in prices,

then the effect of expected returns for an investor exploit-

ing this effect should be E t (r i t | s i t−1 
) = E t ( 

v i t 
p i 

t−1 

− r f | s i 
t−1 

) =
E t (v i t /A i 

t−1 
| s i 

t−1 
) 

p i 
t−1 

/A i 
t−1 

− r f = 

λs i 
t−1 

p i 
t−1 

/A i 
t−1 

− r f . To make this concrete,

we can use the estimates from Table 1 (explained in more

detail in Section 4.4). For example, one of the strongest

predictors of future profits is our proxy for governance,

which has λ = 0 . 061 in Table 1 , Panel B, Regression 5.

Coupled with the average price-to-asset of 
p i 

t−1 

A i 
t−1 

of 1.5 in

our sample, this means that an increase of s i 
t−1 

of 0.22

(equivalent to moving from the 10th to the 90th percentile

of this variable) could elevate returns by 0 . 061 × 0 . 22 
1 . 5 =

0.89%. This calculation takes into account only the value

of the earnings at time t; that is, prices are assumed

constant in steady state. If prices also adjust, then the

effect could be larger. To capture this effect, note that,

when the economy is not in steady state, returns are

given by r i t = 

v i t + p i t 
p i 

t−1 

− 1 − r f , so an additional effect comes

from E t ( 
p i t 

p i 
t−1 

| s i 
t−1 

) = E t ( 
p i t / v 

i 
t 

p i 
t−1 

/ v i 
t−1 

A i 
t−1 

v i 
t−1 

v i t 
A i 

t−1 

| s i 
t−1 

) = 

A i 
t−1 

v i 
t−1 

λs i 
t−1 

,

where we assume that price-earnings ratios stay constant.

So, with 

A i 
t−1 

v i 
t−1 

= 3 . 2 , which is the median of assets-to-gross

profits in our data, this return effect would be 3 . 2 ×
0 . 061 × 0 . 22 = 4 . 3 %. 

Finally, we consider the quantitative effect of ESG de-

mand (prediction 6.a, corresponding to Proposition 7 , but

here looking at ESG demand from some, but not all, in-
583 
vestors). We start with a one-period economy with a risk- 

free rate of r f = 3% and n = 10 risky assets, which we 

think of as equity sectors. The final payoff of each asset 

is v i = μ̄ + f + ε i , where μ̄ = 1 is the expected payoff, f is 

a common shock, and ε i is an idiosyncratic shock, where 

both shocks have zero means and volatilities σ f = σε = 

0 . 15 . Each asset has a supply of shares of z i = 

1 
n = 10% so 

that the market portfolio has payoff v m = 

∑ 

i z 
i v i = μ̄ + f + ∑ 

i 
1 
n ε 

i . 

One of the assets is brown, and the others are green. 

Type-M investors buy b = 30% of the shares outstanding of 

green stocks and 0% of brown stocks. This screening ap- 

proach is more extreme than the ESG-integration approach 

that we focus on elsewhere, but it provides a simple ex- 

ample of how much prices change for a given change in 

demand. The market is cleared by type-A investors, who 

have risk aversion of γ = 3 and wealth W 

A = 1 (equal to 

the expected future value of the market). 

The difference in expected returns of brown-versus- 

green assets is E( r brown ) − E( r green ) = 0 . 23% in equilibrium, 

as shown in the Appendix . In a one-period model, this dif- 

ference in required returns corresponds to a small differ- 

ence in prices of only p brown 

p green − 1 = −0 . 2% . With many time 

periods, a permanent difference in required returns can 

have a large price effect. To see this, recall from the Gor- 

don Growth Model (GGM) that P = D/ ( k − g ) , where k is 

the required return and g is growth. GGM implies that 

∂P 

∂k 

1 

P 
= − D 

( k − g ) 
2 

1 

P 
= − 1 

k − g 
= − P 

D 

. (22) 

So, with a price-dividend ratio of P 
D = 30 , a permanent 

difference in required returns of ∂k = 0 . 23% is associated 

with a meaningful price difference of ∂P 
P = − P 

D ∂k = −30 ×
0 . 23% = −7% . 

4. Empirical results 

4.1. ESG measures and data 

As ESG is a broad umbrella term, we consider four 

proxies that capture different ESG aspects, possibly fol- 

lowed by different investor clienteles. Our goal is not to 

run a horse race between them, but rather to present a 

discussion of how different elements of ESG can be priced 

in the market and an illustration of how our theory guides 

empirical tests for investors who want to incorporate some 

ESG metric into their portfolios. 

1. A measure of E: low carbon intensity. As a measure 

of how green a company is (the E in ESG), we com- 

pute its carbon intensity (CO 2 ), defined as the ratio 

of carbon emissions in thousands of tons over sales 

in millions of dollars. Carbon emissions can be mea- 

sured in different ways, but we use the sum of scope 

1 carbon emissions (a firm’s direct emissions, e.g., from 

the firm’s own fossil fuel usage) and scope 2 carbon 

emissions (indirect emissions from purchased energy, 

e.g., electricity). We do not include scope 3 emissions 

(other indirect emissions) because they are rarely re- 

ported by companies and are at best noisily estimated 
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available between January 1993 and December 2012. We thank Tarun 

Chordia for kindly making these variables available to us. 
17 
and inconsistent across different data providers (e.g.,

Busch et al., 2018 ). We negate the CO 2 variable so that

higher values indicate better ESG (less carbon inten-

sive, greener companies). These data are obtained from

Trucost and are available from January 2009 through

March 2019. 

2. A measure of S: non–sin stock indicator. Stocks in cer-

tain sin industries are shunned by some ESG-conscious

investors, for example, tobacco, gambling, and alco-

hol (related to the S in ESG). We consider a non–sin

stock indicator, taking the value of zero for sin stocks

and the value of one otherwise, so that higher values

indicate better ESG. Sin industries are defined as in

Hong and Kacperczyk (2009) , and this indicator is

available for our longest sample, January 1963 through

March 2019. 

3. A measure of G: low accruals. We use a measure of

governance that can be computed over a long sample

period based on accounting information. We look at

each firm’s accruals over assets with a sample period

spanning January 1963 through March 2019. Accru-

als are essentially accounting income for which the

related cash has not yet been received. 14 We negate

accruals so that higher values indicate better ESG. The

idea, coming from the accounting literature, is that

low accruals indicate that a firm is conservative in

its accounting of profits (e.g., Sloan, 1996 ) and better

governed companies tend to adopt more conservative

accounting processes (e.g., Kim et al., 2012 ). Research

shows companies that are subject to Securities and

Exchange Commission enforcement actions tend to

have abnormally high accruals prior to such actions

(e.g., Richardson et al., 2006 ) and companies with

high accruals have a higher likelihood of earnings

restatements (e.g., Richardson et al., 2002 ). 

4. A measure of overall ESG: MSCI ESG scores. One of the

most widely used ESG scores by institutional investors

is computed by MSCI, and our sample for this variable

is from January 2007 through March 2019. 15 The MSCI

score is a comprehensive assessment of each company’s

ESG profile. We use the top-level ESG score that sum-

marizes each company’s E, S, and G characteristics, on

an industry-adjusted basis, as a numerical score from

zero (worst ESG) to ten (best ESG). 

We merge these data sets with the XpressFeed database

for stock returns and market values, the Compustat

database to compute firm fundamentals, institutional hold-

ings from 13f holdings reports (as aggregated by Thomson

Reuters), signed order flow computed from intraday data,

and the risk model of Barra US Equity (USE3L) that is used

in the computation of the empirical EGS efficient frontier. 16
14 We measure accruals as in Sloan (1996) : (change in current assets mi- 

nus change in cash) minus (change in current liabilities minus change in 

debt included in current liabilities minus change in taxes payable) minus 

(depreciation and amortization expense). 
15 The MSCI website states that, as of August 2018, “MSCI ESG Research 

is used by 46 of the top 50 asset managers and over 1,200 investors 

worldwide” ( https://www.msci.com/esg-ratings , accessed July 7, 2019). 
16 The variables related to signed order flow are defined as in 

Chordia et al (2002) and Chordia and Subrahmanyam (2004) and are 

584 
4.2. Empirical ESG-SR frontier 

To compute the ESG–Sharpe ratio frontier implied by 

our theory, investors must first choose their investment 

universe and compute risk and expected returns. We con- 

sider monthly returns of stocks in the Standard & Poor’s 

(S&P) 500 index, which makes the analysis conservative 

in the sense that we focus on a liquid and realistic in- 

vestment universe with high data coverage, ruling out that 

our results are driven by microcap stocks. To compute 

risk (i.e., the variance-covariance matrix of the S&P 500 

stocks), we assume that all investors use Barra’s US Eq- 

uity risk model (Barra USE3L model), an industry standard 

for use in portfolio management. 17 ESG-unaware investors 

and ESG-aware investors compute expected returns in dif- 

ferent ways. U investors focus on the general equity risk 

premium and the traditional value factor, book-to-market, 

while A investors also use ESG information. 18 

To compute the annualized expected return of any stock 

i in any month t , U investors use 

E U t ( r i,t+1 ) = MKT t + b m i,t BM t , (23) 

where MKT t is the equity risk premium, b m i,t is stock 

i ’s cross-sectional book-to-market z -score (i.e., the stock’s 

book-to-price ratio minus the cross-sectional mean, di- 

vided by the cross-sectional standard deviation), and BM t 

is the return premium of the value factor. For each factor, 

the return premium at time t is its constant Sharpe ra- 

tio, multiplied by its volatility as estimated using the Barra 

model. Details on the estimation method are given in the 

Appendix . 

Similarly, A and M investors compute the annualized 

expected return of stock i as 

E A t ( r i,t+1 ) = MKT t + b m i,t BM t + s i,t ESG t , (24) 

where s i,t is the stock’s ESG score at time t and ESG t is 

the return premium of the ESG factor, based on one of 

the proxies listed in Section 4.1 . The ESG score s i,t is com- 

puted as the cross-sectional z -score of the raw ESG met- 

ric. Because a stock’s ESG score s i is normalized as a cross- 

sectional z -score, we get the intuitive interpretation that 

an ESG score of zero means an average stock in terms of 

the ESG measure, a score of two means that the stock has 

ESG characteristics two standard deviations better than the 

average stock, and so on. For a portfolio, the average ESG 

score is computed as in the theory Section 2.1 , s̄ = 

x ′ s 
x ′ 1 , 

which provides a similar intuition for long-only portfo- 
Estimating the covariance matrix is not a contribution of this paper, 

so we use a third-party risk model for convenience. For details about 

the risk model, see Barra documentation, available, for example, at http: 

//www.alacra.com/alacra/help/barra _ handbook _ US.pdf . 
18 We design our empirical setup to be as simple as possible, with a 

single non-ESG factor, value. Of course, investors may consider other fac- 

tors as well. In such cases, we would expect similar patterns to those 

discussed here, although including or not including ESG could matter rel- 

atively less for investment outcomes. Unless ESG has meaningfully better 

performance or diversification properties than other factors, we would ex- 

pect that as one adds more factors, the optimal weight on ESG, and its 

incremental impact, to decrease. 

https://www.msci.com/esg-ratings
http://www.alacra.com/alacra/help/barra_handbook_US.pdf
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lios, but long-short portfolios can in principle attain an un-

bounded range of ESG scores. 

Using the above methodology, we compute the ESG-SR

frontiers for two ESG proxies: E and G. We do not build the

frontier for S because this proxy is binary (sin or non-sin),

which corresponds to screening (something we consider in

Section 4.3). For brevity, we leave out the frontier for over-

all ESG because it resembles the E frontier. 

Starting with the ESG-SR frontier for the environmen-

tal proxy based on CO 2 emissions, Fig. 4 shows the fron-

tier both from the perspective of ESG-unaware and ESG-

aware investors (solid and dashed lines, respectively). Fur-

ther, we distinguish what we call the ex ante perceived

frontier (Panel A) and the realized frontier (Panel B). For

the former, each month, the investor computes risk and ex-

pected returns as defined previously and then derives the

ESG-SR frontier and the corresponding frontier portfolios.

Panel A simply shows the time series average of these per-

ceived frontiers. The ex post frontiers in Panel B show the

realized Sharpe ratios of these portfolios. 

The two ESG-SR frontiers in Panel A are close together,

suggesting that the environmental proxy we use here is

not very helpful in explaining average returns. This is also

confirmed by the fact that the two frontiers peak around

a carbon score of zero, suggesting that the typical stock

in investor’s A and B tangency portfolio is about average

in its emissions footprint (we further confirm this in the

regression framework in Section 4.6). This finding is even

more striking when looking at Panel B: The two frontiers

sit on top of each other, meaning that the realized Sharpe

ratios of the portfolios on the two frontiers are essentially

identical for any given level of carbon intensity. 

The ESG-SR frontier remains useful even when the ESG

proxy is a weak predictor of returns (as is the case in

Fig. 4 ). For example, the frontier can be used to quantify

the trade-off faced by type-M investors, who are willing to

sacrifice some of the Sharpe ratio to improve their port-

folios’ ESG profile. In the context of Panel B, such ESG-

motivated investors seek portfolios with less carbon emis-

sions (greener portfolios). Moving two units to the right

from the tangency portfolio (i.e., moving toward greener

portfolios, so that the typical stock in the portfolio is two

standard deviations greener) reduces the optimal Sharpe

ratio by about 3%. This modest reduction in SR could be an

acceptable price to pay for some ESG-motivated investors

for such a large reduction in CO 2 . Pushing further toward

greener portfolios is increasingly costly; for example, mov-

ing from the peak to the portfolio score four units greener

reduces the Sharpe ratio by about 10%. 

Fig. 5 presents the ex ante and ex post frontiers, built

similarly as in Fig. 4 , but using our governance proxy.

These frontiers are interesting because the frontiers for the

ESG-unaware differ significantly from those of the ESG-

aware investor. This difference arises because our G proxy

predicts returns in our sample (as discussed further in Sec-

tion 4.6). To understand Fig. 5 , Panel A, note that the ESG-

unaware investor U maximizes the Sharpe ratio for the

ESG score of 0.25, meaning that a typical stock in her

portfolio is close to average for this ESG measure. This

near-neutrality to ESG is not surprising because the U in-

vestor uses information only on book-to-market ratios, and
585 
any exposure to G happens incidentally through the weak 

correlation between book-to-market and G. Moreover, the 

frontier is relatively symmetric in the neighborhood of 

zero, meaning that this investor perceives the cost of tar- 

geting a positive G score to be similar to the cost of target- 

ing a same-magnitude negative tilt on ESG. For example, 

targeting a G score two standard deviations higher than 

optimal (i.e., moving from 0.25 to 2.25) lowers investor 

U’s perceived Sharpe ratio by about 9% and targeting a G 

score two standard deviations lower than optimal (–1.75) 

degrades the perceived Sharpe ratio by 7%. 

The ESG-aware investor’s perceived frontier looks very 

different, as seen in Fig. 5 , Panel A. The frontier peaks at a 

G score of 2.25; that is, for the ESG-aware investor, max- 

imizing the Sharpe ratio means targeting a portfolio with 

a significantly higher G score than the market. Moreover, 

the frontier is clearly asymmetric, in a way that suggests 

that decreasing a portfolio’s G score would be meaning- 

fully more costly to the Sharpe ratio than increasing it. For 

example, a two standard deviation increase from the opti- 

mal point (2.25 to 4.25) reduces the Sharpe ratio by about 

3%. The penalty for a similar move in the opposite direc- 

tion (2.25 to 0.25) is three times as high, 9%. 

The perceived frontiers in Fig. 5 , Panel A, intersect be- 

cause forcing a negative ESG score is seen as more costly 

by investor A than by investor U given that A takes into 

account that G positively predicts returns. The two curves 

cross at a G score of approximately zero, which is also in- 

tuitive. At this point, the optimal portfolio is essentially the 

same for both investors because none of them can get ex- 

posure to the G score that they disagree about. 

Finally, Panel B of Fig. 5 shows the realized Sharpe ra- 

tios of the portfolios that underlie the frontiers in Panel A. 

A’s (ex post) realized frontier is similar to A’s ex ante per- 

ceived frontier, because the ESG score that drives the fron- 

tier is explicitly incorporated into A’s returns forecast and 

because our model of ex ante risk and expected returns 

captures well the ex post realized returns. 

U’s realized frontier in Panel B has a different shape 

than U’s perceived frontier in Panel A because U ignores 

that G predicts returns. The realized ESG-SR frontier looks 

fairly similar to that of investor A for ESG scores close 

to zero because their portfolios are more similar in that 

range. U’s frontier is otherwise below because, for any ESG 

target, investor U chooses a portfolio with a suboptimal 

trade-off between market exposure, value, and G. 

Fig. 5 , Panel B, shows the costs and benefits of using 

ESG investing based on governance. The benefit of using 

G information can be measured by looking at the realized 

SR of the ESG-aware investor, which is 11% higher than the 

realized SR of the ESG-unaware investor (ex ante, in Fig. 5 , 

Panel A, it is 12% higher). The cost of an ESG-motivated 

investor’s preferences can be measured as the reduction in 

SR that occurs when targeting an even higher ESG score 

than that of an A investor. 

4.3. Impact of restrictions: screening out the worst ESG 

stocks 

Our empirical application has so far allowed investors 

to deploy their capital in unconstrained portfolios, going 
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Fig. 4. Empirical ESG–efficient frontier using carbon emissions as a proxy for E. We estimate the ESG–Sharpe ratio frontier for Standard & Poor’s 

(S&P) 500 stocks, with returns driven by valuation (measured by each stock’s book-to-market ratio) and a proxy for E (measured by each stock’s CO 2 
emissions-to-sales ratio). The figure shows annualized maximum Sharpe ratios attainable for each level of ESG constraint. The ESG-unaware investor U 

(dashed line) solely utilizes book-to-market to estimate expected returns. The ESG-aware investor A (solid line) uses both book-to-market and a measure 

of governance (the G in ESG) based on accruals to estimate expected returns. Panel A presents the perceived frontier, built using the ex ante estimates 

from each investor. Panel B presents the ex post frontier using the realized Sharpe ratios of the portfolios from Panel A. 

 

 

 

 

 

 

 

long and short any stock in the investment universe. Also

of interest is to consider realistic constraints faced by many

ESG-sensitive investors. Among such constraints, undoubt-

edly the most popular one is screening out stocks with

the weakest ESG characteristics (i.e., removing such stocks

from the investable universe). Fig. 6 shows how the ESG-SR

frontier is affected by screens using the governance-related
586 
proxy we utilize in Fig. 5 . Fig. 6 shows three different fron- 

tiers: one for the unconstrained investor A (exactly as in 

Fig. 5 , Panel A), another obtained when the investor re- 

moves the 10% of stocks with the lowest ESG characteris- 

tics, and a third frontier with a 20% screen. 

The first observation is perhaps the most obvious: Con- 

straints reduce a portfolio’s expected performance. Not sur- 
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Fig. 5. Empirical ESG–efficient frontier using accruals as a proxy for G. We estimate the ESG–Sharpe ratio frontier for Standard & Poor’s (S&P) 500 stocks, 

with returns driven by valuation (measured by each stock’s book-to-market ratio) and ESG (measured by each stock’s accruals-to-assets ratio, a measure 

related to governance). The figure shows annualized maximum Sharpe ratios attainable for each level of ESG constraint. The ESG-unaware investor U 

(dashed line) solely utilizes book-to-market to estimate expected returns. The ESG-aware investor A (solid line) uses both book-to-market and a measure of 

governance (the G in ESG) based on accruals to estimate expected returns. Panel A presents the perceived frontier, built using the ex ante estimates from 

each investor. Panel B presents the ex post frontier using the realized Sharpe ratios of the portfolios from Panel A. 

 

 

 

 

 

 

 

 

 

 

prisingly, the frontier with the 10% screen is strictly below

the unconstrained one, and the frontier with a 20% screen

is lower still. This means that, for any desired level of the

ESG score, the maximum attainable Sharpe ratio is lower

in a screened universe than in the unrestricted one. 

What is perhaps more interesting is the magnitude by

which the Sharpe ratio decreases. To benchmark the reduc-

tion, a useful rule of thumb is that, under certain assump-

tions, the Sharpe ratio is approximately linear in the square

root of investment breadth (e.g., Grinold and Kahn, 1995 ).

This implies that a 10% (20%) reduction in breadth should
587 
lower the Sharpe ratio roughly by 5% (10%). The reduc- 

tions are roughly the magnitudes of the decrease for ESG 

scores below about –0.5. The penalty is about half as small 

closer to the ESG score of zero, perhaps because around 

that value the optimal portfolio does not invest in ex- 

tremely weak ESG stocks (or, presumably, in extremely 

strong ESG stocks). For the values of ESG score meaning- 

fully above zero, the magnitude of the penalty is sharply 

higher than what could be inferred from the square root 

of breadth rule of thumb. For example, removing the 20% 

of stocks with the lowest ESG reduces the Sharpe ratio by 
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Fig. 6. The Impact of screening on the ESG–efficient frontier. This figure shows an ESG-aware investor’s perceived ESG–Sharpe ratio frontier (solid line; the 

same as the solid line in Fig. 5 , Panel A) as well as two frontiers for an investor who allows herself to use only a screened investment universe: removing 

10% of stocks with the lowest ESG scores (dashed line) or removing 20% of stocks (dotted line). The ESG proxy used here is G, based on negated accruals 

scaled by assets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

over 25% when the investor seeks to achieve high portfolio

ESG scores, due in part to the benefits of shorting low-ESG

stocks. 

A related finding from Fig. 6 is that the portfolio with

the highest Sharpe ratio (the tangency portfolio) has a

lower ESG score when the worst ESG stocks are removed.

The unconstrained investor A optimizes the Sharpe ratio

at the portfolio ESG score of 2.25. After removing 10% of

weakest ESG stocks, the Sharpe ratio is maximized at the

ESG score of 1.5; after removing 20%, the optimum is an

ESG score of one. 

This finding is surprising since it means that investors

who exclude low-ESG assets from their investment uni-

verses may optimally build portfolios with lower ESG

scores than investors who allow for such low-ESG assets.

The intuition behind this finding is that low-ESG assets

are effectively funding sources, allowing the unconstrained

investor to short them to build larger long positions in

high-ESG securities. Moreover, low-ESG assets can be use-

ful hedging instruments for high-ESG assets and could help

the investor improve the Sharpe ratio of the overall port-

folio, potentially by increasing their investment in high-

ESG securities. With screening, the investor may optimally

choose not to take such a large position in high-ESG assets.

4.4. Does ESG predict future fundamentals? 

A necessary condition for ESG-type information to

generate positive abnormal returns is that it correlates

with future fundamentals. 19 To test for this possibility,

we relate our ESG proxies to future fundamentals. We
consider two measures of fundamentals in Table 1 . Panel 

19 ESG could lead to price increases even without a fundamentals chan- 

nel if investor demand for ESG characteristics goes up. This is perhaps 

more likely over short periods and does not lead to a consistent return 

premium over the long term. 
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A reports results based on the accounting rate of re- 

turns, defined as the return on net operating assets as 

in Richardson et al. (2006) and Panel B based on gross 

profitability over assets, defined as revenue minus cost 

of goods sold over total assets as in Novy-Marx (2013) . 

In both panels, these firm fundamentals are measured 12 

months after the ESG variables. For each of our four ESG 

proxies defined in Section 4.1 , we present two specifica- 

tions, one based on a pooled sample with month fixed 

effects and with standard errors clustered at the firm level 

and the other using the Fama-MacBeth procedure with 

Newey-West standard errors. We also control for firm beta, 

size, and book-to-market, although these control variables 

are not critical for our results. 

Regressions 1 and 2 in Table 1 use our E proxy. Negated 

carbon emissions predict higher accounting returns in 

Panel A but are insignificant predictors of gross profitabil- 

ity in Panel B. We conclude that our E proxy perhaps 

is not robustly related to fundamentals. We find some- 

what mixed results for our S proxy. The negative estimates 

in Regressions 3 and 4, in both panels, indicate that sin 

stocks have relatively stronger future fundamentals, consis- 

tent with Blitz and Fabozzi (2017) , but these estimates are 

only borderline significant. Regressions 7 and 8 show that 

the overall ESG score from MSCI is positively related to fu- 

ture fundamentals, but with statistical significance only in 

Panel B. 

The results are the strongest for our governance proxy 

(based on low accruals) in Regressions 5 and 6. In Panel 

A, the highly statistically significant also have a large eco- 

nomic magnitude. A one standard deviation increase in 

negated accruals predicts a corresponding increase of 0.02 

in the accounting rate of returns, or 20% of its average level 

of 0.1. This finding opens up the possibility, which we con- 

firm later, that accruals contain information about future 

fundamentals that may not be fully priced into the market 

(similar to findings of Richardson et al., 2006 ). The cor- 
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Table 1 

Does environmental, social, and governance (ESG) score predict firm profits? 

This table reports the regression of future profitability on current ESG scores, where profitability is measured 12 months into the future. Profitability is 

computed as the accounting return (return on net operating assets, RNOA) in Panel A and as gross profit over assets in Panel B. We consider four ESG 

metrics [E (negated CO 2 intensity), S (a non–sin stock indicator), G (negated accruals over assets), and overall ESG (using MSCI ESG scores)] and three 

control variables (market beta, the logarithm of market capitalization, and the logarithm of the book-to-price ratio). The estimation method is either a 

pooled regression with month fixed effects (pooled) or Fama-MacBeth (FM). Robust t -statistics are in parentheses and are clustered at the stock level in 

pooled regressions or adjusted using a Newey-West weighting scheme in Fama-MacBeth regressions. 

Panel A: Predicting RNOA 

Dependent variable RNOA ( t + 12) 

(1) (2) (3) (4) (5) (6) (7) (8) 

E (low CO2) 0.006 ∗∗∗ 0.006 ∗∗∗

(4.91) (7.34) 

S (non- sin ) −0.008 ∗ −0.006 ∗∗∗

( −1.94) ( −2.88) 

G (low accruals) 0.208 ∗∗∗ 0.193 ∗∗∗

(23.26) (28.64) 

ESG (MSCI) 0.0001 0.0001 

(0.15) (0.24) 

Beta −0.068 ∗∗∗ −0.068 ∗∗∗ −0.064 ∗∗∗ −0.067 ∗∗∗ −0.060 ∗∗∗ −0.062 ∗∗∗ −0.052 ∗∗∗ −0.040 ∗∗∗

( −17.90) ( −10.24) ( −33.77) ( −20.69) ( −31.79) ( −19.43) ( −11.62) ( −4.40) 

Ln market cap 0.011 ∗∗∗ 0.011 ∗∗∗ 0.015 ∗∗∗ 0.015 ∗∗∗ 0.014 ∗∗∗ 0.014 ∗∗∗ 0.008 ∗∗∗ 0.006 ∗∗∗

(12.45) (23.91) (32.71) (26.55) (30.14) (26.85) (6.54) (4.89) 

Ln(P/B) 0.014 ∗∗∗ 0.015 ∗∗∗ 0.027 ∗∗∗ 0.028 ∗∗∗ 0.028 ∗∗∗ 0.028 ∗∗∗ 0.026 ∗∗∗ 0.038 ∗∗∗

(6.72) (6.98) (22.59) (22.01) (23.73) (22.11) (9.27) (11.94) 

RNOA(t) 0.763 ∗∗∗ 0.765 ∗∗∗ 0.710 ∗∗∗ 0.707 ∗∗∗ 0.725 ∗∗∗ 0.720 ∗∗∗ 0.756 ∗∗∗ 0.734 ∗∗∗

(88.59) (97.48) (167.53) (118.95) (169.65) (128.80) (63.53) (61.25) 

Constant 0.020 ∗∗∗ 0.021 ∗∗ −0.005 0.003 −0.019 ∗∗∗ −0.009 0.002 0.001 

(2.78) (2.32) ( −0.95) (0.47) ( −6.59) ( −1.56) (0.19) (0.06) 

Number of observations 239,440 239,440 1374,620 1374,620 1354,499 1354,499 116,130 116,130 

R -squared 0.708 0.712 0.631 0.631 0.636 0.635 0.723 0.727 

Estimation method Pooled FM Pooled FM Pooled FM Pooled FM 

Panel B: Predicting profitability 

Dependent variable Gross profit over assets ( t + 12) 

(1) (2) (3) (4) (5) (6) (7) (8) 

E (low CO2) −0.005 −0.006 ∗

( −0.96) ( −1.79) 

S (non- sin ) −0.002 −0.003 ∗

( −0.89) ( −1.79) 

G (low accruals) 0.061 ∗∗∗ 0.070 ∗∗∗

(7.66) (14.46) 

ESG (MSCI) 0.001 ∗∗ 0.001 ∗∗∗

(2.49) (3.02) 

Beta −0.022 ∗∗∗ −0.014 ∗∗ −0.025 ∗∗ −0.013 ∗∗∗ −0.009 ∗∗∗ −0.008 ∗∗∗ −0.017 ∗∗∗ −0.015 ∗∗∗

( −4.89) ( −2.29) ( −2.38) ( −5.91) ( −5.15) ( −3.59) ( −6.98) ( −3.30) 

Ln market cap −0.005 −0.004 ∗∗ −0.001 −0.002 ∗∗∗ −0.001 ∗ −0.001 ∗∗∗ −0.001 ∗ −0.001 ∗∗

( −1.43) ( −2.37) ( −1.39) ( −3.84) ( −1.85) ( −4.13) ( −1.93) ( −2.24) 

Ln(P/B) 0.036 0.038 ∗∗ 0.012 0.014 ∗∗∗ 0.002 ∗∗ 0.002 ∗∗∗ 0.006 ∗∗∗ 0.006 ∗∗∗

(1.32) (2.25) (1.53) (3.42) (2.21) (3.34) (4.83) (8.58) 

GPOA(t) 1.026 ∗∗∗ 1.017 ∗∗∗ 0.978 ∗∗∗ 0.980 ∗∗∗ 0.960 ∗∗∗ 0.960 ∗∗∗ 0.954 ∗∗∗ 0.948 ∗∗∗

(25.35) (63.36) (49.31) (132.34) (160.64) (252.59) (102.37) (177.07) 

Constant 0.019 ∗∗∗ 0.010 0.028 ∗∗∗ 0.023 ∗∗∗ 0.020 ∗∗∗ 0.023 ∗∗∗ 0.026 ∗∗∗ 0.028 ∗∗∗

(3.11) (1.13) (7.32) (7.92) (8.73) (7.91) (5.26) (3.51) 

Number of observations 361,540 361,540 1877,268 1877,268 1521,202 1521,202 171,284 171,284 

R -squared 0.087 0.684 0.267 0.686 0.712 0.747 0.866 0.892 

Estimation method Pooled FM Pooled FM Pooled FM Pooled FM 

 

 

 

 

 

responding regressions in Panel B replicate the result for

gross profitability. Again, higher G scores predict an in-

crease in future profitability, but this time by a relatively

smaller amount. A one standard deviation move of accru-

als is associated with a 0.006 move in gross profitability,

or about 2% of its average level of 0.3. 
589 
The results for the G proxy are robust to a variety 

of controls. For example, differences could exist in accru- 

als across industries, but the addition of industry dummy 

variables to Regression 5 does not change the coefficient (it 

slightly increases from 0.208 to 0.209, with a t -statistic of 

22.6 versus 23.3). Similarly, running the regressions with- 
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out controls for firm size, book-to-market, or beta, or with-

out date fixed effects, has little effect on the result. Lastly,

a strong positive effect exists on accounting returns and on

profitability even 24 or 36 months after we measure accru-

als. We conclude that there is strong evidence that accruals

correlate with future profitability. 

4.5. Does ESG predict investor demand? 

As we explain in the theory section, correlation with

future fundamentals is not enough in itself to determine
Table 2 

Does environmental, social, and governance (ESG) score predict investor demand?

This table reports the regression of investor demand on measures of ESG. Inve

reports, led by three months) in Panel A, trading activity (log number of trades i

over total dollar volume) in Panel C. The ESG proxies and control variables are 

month fixed effects (pooled) or Fama-MacBeth (FM). Robust t -statistics are in p

adjusted using a Newey-West weighting scheme in Fama-MacBeth regressions. 

Panel A: Predicting institutional ownership 

Dependent variable Inst

(1) (2) (3) 

E (low CO2) 2.206 ∗∗∗ 2.284 ∗∗∗

(3.37) (14.65) 

S (non- sin ) 6.128 ∗∗

(2.43) 

G (low accruals) 

ESG (MSCI) 

Beta 5.774 ∗∗∗ 5.912 ∗∗∗ 5.698 ∗∗∗

(8.50) (21.96) (14.13) 

Ln market cap 10.079 ∗∗∗ 10.057 ∗∗∗ 9.662 ∗∗∗

(50.48) (108.99) (62.30) 

Ln(P/B) −0.321 −0.354 ∗∗∗ −1.759 ∗∗∗

( −1.20) ( −5.08) ( −11.05) 

Constant −10.649 ∗∗∗ −10.400 ∗∗∗ −17.176 ∗∗∗ −
( −6.77) ( −17.28) ( −6.40) 

Number of observations 378,623 378,623 962,867 

R -squared 0.454 0.450 0.470 

Estimation method Pooled FM Pooled 

Panel B: Predicting number of trades 

Dependent variable 

(1) 

E (low CO2) −0.063 ∗∗∗

( −3.46) 

S (non- sin ) −
(

G (low accruals) 

ESG (MSCI) 

Beta 1.382 ∗∗∗ 0

(29.97) (

Ln market cap 0.898 ∗∗∗ 0

(67.04) (

Ln(P/B) −0.003 −
( −0.16) (

Constant −0.415 ∗∗∗ −
( −2.95) (

Number of observations 49,264 3

R -squared 0.737 

Estimation method Pooled 

590 
whether an ESG variable should help or hurt returns. For 

the full picture, one also needs to analyze investor demand 

for ESG. In this section, we consider institutional owner- 

ship, trading activity, and signed order flow to capture in- 

vestors’ interest in owning or purchasing a given stock. 

Table 2 , Panel A, uses a similar setup as Table 1 to 

predict institutional holdings (in percent, using 13f data) 

based on ESG metrics three months earlier (where the lag 

chosen to ensure that the ESG variables are known before 

we observe institutional holdings) and our usual controls. 
 

stor demand is measured as institutional ownership (obtained from 13f 

n the next month) in Panel B, and signed order flow (dollar buy volume 

as in Table 1 . The estimation method is either a pooled regression with 

arentheses and are clustered at the stock level in pooled regressions or 

itutional holdings ( t + 3) 

(4) (5) (6) (7) (8) 

7.037 ∗∗∗

(11.50) 

1.060 3.208 ∗∗∗

(0.74) (2.98) 

0.343 ∗∗ 0.420 ∗∗∗

(2.55) (6.98) 

6.905 ∗∗∗ 1.610 ∗∗∗ 3.038 ∗∗∗ 6.371 ∗∗∗ 5.512 ∗∗∗

(20.76) (3.37) (11.91) (7.05) (11.27) 

9.691 ∗∗∗ 9.599 ∗∗∗ 9.650 ∗∗∗ 0.846 ∗∗∗ −1.265 ∗∗∗

(64.95) (53.67) (85.18) (3.32) ( −2.67) 

−1.264 ∗∗∗ −2.282 ∗∗∗ −1.931 ∗∗∗ 1.136 ∗∗∗ 1.642 ∗∗∗

( −8.39) ( −13.90) ( −13.83) (3.86) (9.22) 

19.342 ∗∗∗ −3.402 ∗∗∗ −5.076 ∗∗∗ 62.372 ∗∗∗ 82.049 ∗∗∗

( −18.11) ( −3.00) ( −9.55) (24.56) (18.45) 

962,867 737,865 737,865 180,326 180,326 

0.424 0.475 0.422 0.033 0.083 

FM Pooled FM Pooled FM 

ln #trades ( t + 1) 

(2) (3) (4) 

0.061 

 −0.97) 

0.282 ∗∗∗

(3.44) 

0.004 

(0.61) 

.936 ∗∗∗ 0.940 ∗∗∗ 0.989 ∗∗∗

43.48) (43.56) (21.81) 

.709 ∗∗∗ 0.724 ∗∗∗ 0.642 ∗∗∗

111.50) (108.31) (37.60) 

0.062 ∗∗∗ −0.085 ∗∗∗ −0.075 ∗∗∗

 −7.13) ( −9.80) ( −4.12) 

0.071 −0.178 ∗∗∗ 2.519 ∗∗∗

 −0.85) ( −3.05) (13.37) 

12,487 263,217 28,703 

0.886 0.892 0.647 

Pooled Pooled Pooled 

(continued on next page) 
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Table 2 

Continued. 

Panel C: Predicting signed order flow 

Dependent variable Buy volume/total volume ( t + 1) 

(1) (2) (3) (4) 

E (low CO2) −0.069 ∗∗∗

( −4.07) 

S (non- sin ) 0.321 

(1.27) 

G (low accruals) 0.767 ∗

(1.95) 

ESG (MSCI) −0.015 ∗

( −1.67) 

Beta 0.271 ∗∗∗ 1.593 ∗∗∗ 1.588 ∗∗∗ 0.097 ∗

(4.63) (19.20) (17.47) (1.75) 

Ln market cap 0.079 ∗∗∗ 0.740 ∗∗∗ 0.769 ∗∗∗ −0.106 ∗∗∗

(4.11) (30.86) (28.03) ( −4.55) 

Ln(P/B) 0.019 0.280 ∗∗∗ 0.249 ∗∗∗ −0.023 

(0.79) (8.20) (6.62) ( −0.87) 

Constant 48.874 ∗∗∗ 44.105 ∗∗∗ 44.206 ∗∗∗ 51.086 ∗∗∗

(238.71) (139.66) (207.70) (225.45) 

Number of observations 49,318 313,711 264,242 28,736 

R -squared 0.011 0.122 0.121 0.166 

Estimation method Pooled Pooled Pooled Pooled 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Environmental, social, and governance (ESG) score and valuation. 

We regress each firm’s valuation ratio (the logarithm of price-to-book) 

on the contemporaneous ESG score, controlling for the market beta. The 

ESG proxies are as in Table 1 . Robust t -statistics are in parentheses and 

are clustered at the stock level in these pooled regressions. 

Dependent variable Ln(P/B) 

(1) (2) (3) (4) 

E (low CO2) 0.086 ∗∗∗

(7.25) 

S (non-sin) 0.020 

(0.30) 

G (low accruals) −0.470 ∗∗∗

( −11.59) 

ESG (MSCI) 0.058 ∗∗∗

(8.25) 

Beta −0.449 ∗∗∗ 0.402 ∗∗∗ 0.338 ∗∗∗ −0.348 ∗∗∗

( −16.39) (28.48) (21.13) ( −8.56) 

Constant 1.391 ∗∗∗ 0.366 ∗∗∗ 0.514 ∗∗∗ 1.245 ∗∗∗

(38.32) (5.48) (27.37) (21.81) 

Number of observations 427,857 2120,679 1708,222 203,502 

R -squared 0.050 0.073 0.077 0.046 

Estimation method Pooled Pooled Pooled Pooled 
Institutional investors (whose interest we measure using

13f filings) seem to incorporate ESG when forming their

portfolios. All four ESG proxies correlate positively with in-

stitutional holdings. The economic effect of these variables

is noticeable. For example, a one standard deviation in-

crease in E (negated CO 2 intensity) is associated with in-

creased institutional ownership of 1.3% in favor of greener

firms. The corresponding number is 0.3%–1.3% for G and

0.6%–0.8% for overall ESG. As for our binary S proxy, a

move from a sin stock to a non-sin stock implies an in-

crease in holdings of 6%–7%. 

Panels B and C in Table 2 consider measures of trading

activity (logarithm of the number of trades) and signed or-

der flow (the fraction of dollar volume that is attributable

to buys). For brevity, we report only pooled regressions

with date fixed effects. The results are perhaps most intu-

itive for accruals, where both the number of trades and the

fraction of buys increase when this ESG proxy improves.

For the other three metrics, evidence is not as straightfor-

ward. The number of trades seems to decrease for stocks

with low carbon intensity and for non-sin stocks. For the

former proxy, we also see a decrease in the fraction of

buys. 

4.6. Does ESG predict valuation and future returns? 

The findings so far suggest that at least some ESG prox-

ies (e.g., G) robustly correlate with future fundamentals.

At the same time, some evidence exists that investors tilt

their portfolios toward stocks with more attractive G. As

we show in the theory section, the interplay between the

two effects could lead to a return premium or discount,

depending on which effect is stronger. The prediction is

perhaps easier to make relative to the proxies for E, S,

and overall ESG, for which we find less correlation to fu-

ture fundamentals and stronger investor demand. Hence,

the theory suggests that stocks with good E, S, or ESG
591 
should be more expensive and have lower future returns 

than stocks with good G. To assess these predictions, we 

consider valuations (Tobin’s q) and risk-adjusted returns in 

Tables 3 and 4 . 

Table 3 shows how the ESG proxies correlate with 

the logarithm of the price-to-book ratio. Because our 

interest here is how much the market is willing to pay 

for ESG characteristics, we analyze the relation between 

contemporaneous valuation and ESG proxies. We control 

for market beta, but we naturally omit the previously 

used control variables that are related to valuation by 

construction (i.e., size and book-to-market). 
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Table 4 

Does environmental, social, and governance (ESG) score predict returns? 

This table reports the performance of high-ESG minus low-ESG portfolios. For each month, we sort stocks into portfolios based on quintiles of their ESG 

scores (defined as in Table 1 ). We then compute the return over the following month of the quintile with the best ESG scores minus that with the lowest 

scores. Stocks are equal weighted in Panel A and value weighted in Panel B. We report the portfolios’ excess return, one-factor capital asset pricing model 

(CAPM) alpha, three-factor alpha that also controls for the Fama-French (FF) factors related to size and value, five-factor alpha that further controls for the 

FF factors related to profitability and investment, and six-factor alpha that also controls for momentum (Mom), annualized and in percentages. t -statistics 

are reported in parentheses. 

E 

(low CO 2 ) 

S 

(non- sin ) 

G 

(low accruals) 

ESG 

(MSCI) 

Panel A: Equal-weighted returns 

Average excess return 5.15% 0.50% 7.84% ∗∗∗ 0.38% 

(1.59) (0.35) (4.41) (0.28) 

CAPM alpha 7.02% ∗∗ −0.42% 7.87% ∗∗∗ 1.29% 

(2.09) ( −0.30) (4.39) (1.00) 

Three-factor (FF) alpha 5.03% 0.06% 7.30% ∗∗∗ 0.74% 

(1.63) (0.05) (4.03) (0.60) 

Five-factor (FF) alpha 5.98% ∗ 1.28% 8.85% ∗∗∗ 0.28% 

(1.92) (0.94) (4.91) (0.22) 

Six-factor (FF + Mom) alpha 5.12% ∗ 1.03% 8.71% ∗∗∗ 0.27% 

(1.73) (0.74) (4.76) (0.22) 

Panel B: Value-weighted returns 

Average excess return 4.88% ∗ −3.04% ∗∗ 3.01% ∗∗ 0.02% 

(1.89) ( −2.07) (2.30) (0.01) 

CAPM alpha 4.13% −4.12% ∗∗∗ 4.00% ∗∗∗ 1.34% 

(1.52) ( −2.85) (3.12) (0.70) 

Three-factor (FF) alpha 3.02% −3.69% ∗∗ 3.22% ∗∗∗ 0.84% 

(1.14) ( −2.58) (2.64) (0.45) 

Five-factor (FF) alpha 4.71% ∗ −0.20% 3.32% ∗∗∗ −0.58% 

(1.85) ( −0.15) (2.76) ( −0.31) 

Six-factor (FF + Mom) alpha 4.33% ∗ −0.36% 3.07% ∗∗ −0.59% 

(1.72) ( −0.26) (2.52) ( −0.32) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 The last years in our sample are particularly difficult for sin stocks. 

Tobacco companies posted historically weak results. For example, the 

MSCI World Tobacco index under-performed the cap-weighted benchmark 

in each of 2016, 2017, and 2018, by about 1%, 9%, and 28%, respectively. 
Regression 1 in Table 3 suggests that prices of stocks

with strong E scores (i.e., stocks with low carbon inten-

sity, green stocks) are relatively higher than brown stocks’

prices. This is consistent with the relatively higher demand

from investors that we show earlier. A similar pattern is re-

vealed when using the overall ESG metric (from MSCI) in

Regression 4. In contrast, we find no significant difference

in valuations between sin and non-sin stocks when using

our S proxy in Regression 2. 

Perhaps most interesting is Regression 4, suggesting

that G (low accruals) is not priced by the market. In fact,

we find low valuation ratios for stocks with high G scores

despite the stronger forecasted profitability. This opens up

the possibility that such stocks generate attractive returns,

which is something we confirm below. 

Table 4 shows the return predictability of the ESG prox-

ies. Based on each of our four ESG proxies, we sort stocks

into quintiles (in the case of the sin or non-sin indicator,

into two portfolios) each month and then form a portfolio

that goes long the best ESG stocks and short the worst ESG

stocks. Table 4 presents the resulting performance for both

the equal-weighted and value-weighted portfolios, control-

ling for a variety of asset pricing factors. 

The portfolio based on G has highly significant re-

turns. The economic magnitude of this effect is substan-

tial: 7% a year for the equal-weighted and 3% a year for

the value-weighted portfolio, even after controlling for the

five Fama and French (2015) factors augmented with mo-

mentum. This finding reinforces our conclusion that G, or

at least the particular aspect of governance we proxy for

here over our sample, can be useful even for investors who

already use multiple other investment factors in their port-
592 
folio decisions (in Section 4.2 , our application was for sim- 

plicity, limited to the market factor and the value factor). 

For the E and overall ESG proxies, we find little or weak 

evidence of abnormal returns. Over our sample period, less 

carbon intense companies seem relatively outperformed 

based on the point estimate, but this effect is significant 

only at the 10% level. Bolton and Kacperczyk (2019) find 

a carbon premium in returns but show that it disappears 

in richer specifications, for example, when they control for 

industry composition. 

Finally, we find some evidence for the sin premium, as 

in Hong and Kacperczyk (2009) . Because we consider a 

spread portfolio long in non-sin stocks (higher ESG) and 

short sin stocks (lower ESG), a sin return premium would 

be reflected as a negative alpha estimate. We find point 

estimates of a sin premium up to 4% a year with value- 

weighted returns, but the estimate is small and insignif- 

icant with equal-weighted returns and when we control 

for the five-factor or six-factor models (with both equal- 

and value-weighted returns), consistent with findings of 

Blitz and Fabozzi (2017) . Our results are weaker than those 

of Hong and Kacperczyk (2009) , possibly because of differ- 

ences in methodology and in sample period. 20 We compare 

sin stocks with the whole universe of non-sin stocks, while 

Hong and Kacperczyk (2009) compare sin stocks with the 

closest peers that do not suffer from the sin stigma, that 

is, a different set of control stocks. 
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5. Conclusion: ethical, saintly, and guiltless investing 

Investors increasingly incorporate ESG views in their

portfolios. Said simply and with a twist on the meaning

of ESG, many investors want to own ethical companies in

a saintly effort to promote good corporate behavior, while

hoping to do so in a guiltless way that does not sacrifice

returns. 

Investors must realistically evaluate the costs and ben-

efits of responsible investing, and we hope that our frame-

work is a useful way to conceptualize and quantify these

costs and benefits. We show that a responsible investor’s

decision can be conceptualized by the ESG-efficient fron-

tier, a graphical illustration of the investment opportunity

set. The benefit of ESG information can be quantified as

the resulting increase in the maximum Sharpe ratio (rela-

tive to a frontier based on only non-ESG information). The

cost of ESG preferences can be quantified as the drop in

Sharpe ratio when choosing a portfolio with better ESG

characteristics than those of the portfolio with maximum

Sharpe. 

In addition to its practical appeal, the ESG-efficient

frontier is based on a rigorous theoretical framework. We

explicitly derive the frontier and the corresponding set of

optimal portfolios. The optimal portfolios are spanned by

four funds, one of which captures stocks’ ESG scores. This

framework can be viewed as a theoretical foundation for

what is called ESG integration, meaning that ESG charac-

teristics are used directly in portfolio construction (not as

screens). 

Empirically, we find that when ESG is proxied for by a

measure of governance based on accruals, the maximum

SR is achieved for a relatively high level of ESG. Increas-

ing the ESG level even further leads to only a small re-

duction in SR, implying that ethical goals can be achieved

at a small cost. When we impose realistic constraints on

the portfolio, we see a downward shift in the ESG-SR fron-

tier. This is an expected outcome, because imposing con-

straints reduces the maximum Sharpe ratio that one can

attain for any given ESG score. More surprisingly, screens

that remove the lowest ESG assets from the investment

universe can lead investors who maximize their Sharpe ra-

tio to choose a portfolio with lower ESG scores than those

chosen by unconstrained investors who allow investments

in low-ESG assets. This result highlights nuances in op-

timally incorporating ESG into portfolio construction and

suggests improvements to traditional approaches based on

simple screening. 

Turning to equilibrium asset prices, we derive an ESG-

adjusted CAPM, which helps describe market environments

that make ESG scores predict returns positively or nega-

tively. To our knowledge, our model is the first to explicitly

model heterogeneity in how investors use ESG informa-

tion. We allow for investors to have preferences over ESG

and for the possibility that investors find investment intel-

ligence from ESG information. We argue that this feature

is realistic, because not only do we observe large assets

under management deployed with ESG in mind (e.g., the

2018 Global Sustainable Investment Review ), but ESG also is

increasingly discussed as a potential alpha signal, both in

academic outlets [going back to at least Sloan (1996) and
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Gompers et al. (2003) ] and in practitioner journals (e.g., 

Nagy et al., 2015 ). This heterogeneity results in a range 

of possible equilibria depending on the relative impor- 

tance of each investor type, leading to a relation between 

ESG and expected returns that is positive, negative, or 

neutral. 

We test the empirical predictions of the theory us- 

ing a range of ESG proxies that reflect different aspects 

of our model and that can represent different clienteles 

of investors. Our proxy G has historically offered ESG in- 

vestors guiltless saintliness, perhaps because good G pre- 

dicts strong future fundamentals, while attracting mod- 

est investor demand, leading to relatively cheap valua- 

tions and positive returns. Our proxies for E, S, and over- 

all ESG are weaker predictors of future profits, and in- 

vestor demand appears stronger for these proxies, which 

could help explain the higher valuations of stocks that 

score well on these metrics and the low or insignificant 

returns. 

In conclusion, we think that our model provides a use- 

ful framework for responsible investment that we hope 

will be useful both for future research on the costs and 

benefits of ESG investing and for ESG applications in 

investments practice. 

Appendix 

A.1. Relation between the ESG-SR frontier and the 

mean-variance frontier 

Fig. 1 shows how the ESG-SR frontier is related to the 

standard mean-variance frontier. What follows is a sketch 

of the math behind the graph. Consider first the frontier 

among portfolios with a certain ESG score. To see that 

this is a hyperbola, minimize the variance x ′ �x for all 

portfolios with a given expected return, x ′ μ = μ̄, portfo- 

lio weights that sum to one, x ′ 1 = 1 , and a given ESG score 

x ′ s = s̄ . The solution to this minimization problem is lin- 

ear in the expected return, μ̄, which means that the corre- 

sponding variance is quadratic in μ̄, showing that the fron- 

tier is a hyperbola when plotted in the usual way (mean, 

standard deviation). 

The hyperbola for a given ESG score clearly lies inside 

the standard hyperbola, because minimizing the variance 

among all portfolios must provide a result that is at least 

as small as minimizing over the subset with a given ESG 

score. In fact, the two hyperbolas touch in a single point. 

To see why, recall that the standard mean-variance fron- 

tier is spanned by two portfolios. In other words, there ex- 

ist portfolios x 1 , x 2 such that the frontier consists of port- 

folios of the form a x 1 + ( 1 − a ) x 2 , where a runs from −∞ 

to ∞ . Because x 1 and x 2 have different ESG scores generi- 

cally, all frontier portfolios have different ESG scores. Fur- 

ther, for each ESG score, exactly one frontier portfolio has 

this score, so this is where the two hyperbolas touch each 

other. 

Finally, given that the hyperbola for a given ESG scores 

lies inside the standard frontier, then the Sharpe ratio of 

its tangency portfolio must be lower than the overall tan- 

gency portfolio (except in the single case when they are 

the same). 
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A.2. Example in Section 3.2 

With prices p, the demand of type-A investors is 

x = 

1 

γ
diag 
(

p i 
)
�̄−1 diag 

(
p i 
)(

diag 

(
1 

p i 

)
μ̄ − 1 − r f 

)
. (25)

The demand in dollars is W 

A 
0 

x . In equilibrium, this dol-

lar demand must equal the supply in dollars, net of what

the type-M investors buy, diag ( p i ) ̄z . Here, z̄ i = 

1 
n for the

brown asset and z̄ i = 

1 
n ( 1 − b ) for the green assets (be-

cause M investors have bought the remaining b 
n shares

outstanding for green assets). Hence, we have the equilib-

rium condition 

z̄ = 

W 

A 
0 

γ
�̄−1 
(
μ̄ −

(
1 + r f 

)
p 
)
, (26)

which implies that 

p = 

μ̄ − γ
W 

A 
0 

�̄z̄ 

1 + r f 
. (27)

Using that the variance-covariance matrix is �̄ =
σ 2 

f 
11 ′ + σ 2 

ε I, 

p green = 

μ̄ − γ
W 

A 
0 

(
σ 2 

f ( 1 − b + b/n ) + ( 1 − b ) σ 2 
ε /n 

)
1 + r f 

= 0 . 918

(28)

and 

p brown = 

μ̄ − γ
W 

A 
0 

(
σ 2 

f ( 1 − b + b/n ) + σ 2 
ε /n 

)
1 + r f 

= 0 . 916 . (29)

The corresponding excess returns are E( r green ) =
μ̄

p green − 1 − r f = 5 . 88% and E( r brown ) = 

μ̄

p brown 
− 1 − r f =

6 . 11% . (Excluded stocks are often highly correlated because

they tend to share similar characteristics, e.g., belong to

the same industry. We capture this effect by considering

a small number of assets, n = 10 , each representing a

sector. Alternatively, one can consider a large number of

individual stocks and include industry factors in addition

to the market-wide risk and idiosyncratic risk). 

A.3. Estimating the empirical ESG-efficient frontier 

As discussed in Section 4.2 , we model expected returns

as linear functions of factor exposures. For instance, in-

vestor U estimates expected returns as 

E U t ( r i,t+1 ) = MKT t + b m i,t BM t , (30)

where MKT t is the equity risk premium, b m i,t is stock i ’s

cross-sectional book-to-market z -score, and BM t is the re-

turn premium of the factor-mimicking value factor, and

similarly for investor A, who also includes an ESG factor.

To show how we estimate these models, it is helpful to

write them in a general way that captures either investor

type. We first show how we model the vector of realized

returns, r t+1 , and then later we turn to the expected re-

turns, E 
j 
t ( r t+1 ) , for investor j ∈ { U, A } . Realized returns fol-

low a standard factor model: 

r t+1 = X t F t+1 + εt+1 , (31)
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where X t is a matrix of all securities’ factor exposures, F t+1 

is a vector of factor returns, and εt+1 are the idiosyncratic 

shocks. For investor U, X t is an N × 2 matrix in which the 

first column is a vector of ones and the second contains 

the book-to-market z -scores. For investor A, X t is an N × 3 

matrix in which the first two columns are the same and 

the third column is a vector of ESG z -scores. Even though 

investors U and A use different factor models (i.e., different 

X t and F t+1 ), we use the same notation for simplicity. 

The factor returns F t+1 are unobserved, but they can be 

estimated as follows. Each time period, we run a cross- 

sectional regression of stock returns on their characteris- 

tics and note that the regression coefficients are the factor 

returns. Specifically, we run a generalized least squares re- 

gression each period of stock-level returns on stock-level 

characteristics, using the Barra risk model to obtain an es- 

timate of the residual covariance matrix, �t = var ( εt+1 ) , 

which yields the following estimated factor returns 

ˆ F t+1 = 

(
X 

T 
t �

−1 
t X t 

)−1 
X 

T 
t �

−1 
t r t+1 . (32) 

Here, we can interpret θt := ( X T t �
−1 
t X t ) 

−1 X T t �
−1 
t as the 

factor-mimicking portfolio weights, i.e., ˆ F t+1 = θt r t+1 . 

Finally, we need to compute expected returns: 

E j t ( r t+1 ) = X t E 
j 
t ( F t+1 ) , (33) 

which means that we need to estimate expected factor re- 

turns, E 
j 
t ( F t+1 ) . The simplest way to do this is to assume 

that E 
j 
t ( F t+1 ) is constant over time and then estimate the 

factor premiums as the sample average of factor returns. 

This simple method does not work well empirically, how- 

ever, because it leads, for example, to perceived and real- 

ized ESG-SR frontiers that differ significantly even for in- 

vestor A. This problem arises because investors have an in- 

centive to choose extreme portfolios when the perceived 

risk is time-varying (i.e., sometimes very low) while the 

perceived expected return is constant. 

A more realistic specification is to assume that each fac- 

tor k has a time-varying risk and a constant Sharpe ra- 

tio, E 
j 
t ( F 

k 
t+1 

) = σ F,k 
t S R F,k . The volatility of each factor, σ F,k 

t , 

can be computed based on the factor-mimicking portfolio 

weights and the overall risk model, σ F,k 
t = 

√ 

θ k 
t �t ( θ k 

t ) 
T 

. Fi- 

nally, we estimate S R F,k as the realized full-sample Sharpe 

ratio of the volatility-scaled factor returns, ˆ F k 
t+1 

/σ F,k 
t . 

A.4. Proofs 

Proof of Proposition 1 . Consider the problem of maximiz- 

ing the return given a level of risk σ and an ESG score s̄ : 

max 
x 

s . t . s̄ = 

x ′ s 
x ′ 1 

σ 2 = x ′ �x 

(
x ′ μ − γ

2 

σ 2 + f ( ̄s ) 

)
. (34) 

Clearly, maximizing the expected return for given level 

of σ and s̄ is achieved by maximizing the Sharpe ratio for 

that σ and s̄ . Further, the resulting Sharpe ratio is the same 

for all levels of σ . To see why, suppose that x 1 is the op- 

timal solution for ( σ1 , ̄s ) and x 2 is the optimal solution 

for ( σ , ̄s ) . We can scale x as σ / σ x to have a volatility 
2 2 1 2 2 
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of σ1 , and this scaled portfolio still has the same average

ESG score, s̄ . Given that x 1 has the highest expected return

among such portfolios, 

SR ( x 1 ) = 

x ′ 1 μ
σ1 

≥
σ1 

σ2 
x 2 

′ μ
σ1 

= 

x 2 
′ μ

σ2 

= SR ( x 2 ) . (35)

The symmetric argument shows that the opposite in-

equality also holds, so SR ( x 1 ) = SR ( x 2 ) = SR ( ̄s ) . 

Let us solve the problem explicitly. If we rewrite the

first constraint as x ′ ˜ s = 0 , where ˜ s = s − 1 ̄s , and introduce

Lagrange multipliers π and θ , then the solution is charac-

terized by the first-order condition 

0 = μ + π ˜ s − θ�x, (36)

meaning that the optimal portfolio is given by 

x = 

1 

θ
�−1 ( μ + π ˜ s ) . (37)

Both constraints clearly bind, and the first one yields 

0 = 

1 

θ
˜ s ′ �−1 ( μ + π ˜ s ) . (38)

So, the first Lagrange multiplier is 

π = − ˜ s ′ �−1 μ

˜ s ′ �−1 ˜ s 
= − ( s − 1 ̄s ) 

′ �−1 μ

( s − 1 ̄s ) 
′ �−1 ( s − 1 ̄s ) 

= 

c 1 μs̄ − c sμ

c ss − 2 c 1 s ̄s + c 11 ̄s 2 
. (39)

The second constraint yields 

σ 2 = 

1 

θ2 
( μ + π ˜ s ) 

′ �−1 ( μ + π ˜ s ) . (40)

Using the first constraint, we can simplify as 

σ 2 = 

1 

θ2 
μ

′ 
�−1 ( μ + π ˜ s ) , (41)

implying that the second Lagrange multiplier is 

θ = 

1 

σ

√ 

c μμ −
(
c sμ − c 1 μs̄ 

)2 

c ss − 2 c 1 s ̄s + c 11 ̄s 2 
. (42)

This shows explicitly that we can write the optimal

portfolio as x = σv , where the vector v depends only on

the exogenous parameters and s̄ , that is, not on σ . 

Finally, as seen in Eq. (7) , the optimal level of

risk is given by σ = SR ( ̄s ) /γ . Inserting this risk level

yields ( SR ( ̄s ) ) 2 

2 γ + f ( ̄s ) . Multiplying by 2 γ gives the result

[Eq. (8)] in the proposition. �

Proof of Proposition 2 . The maximum Sharpe ratio for a

given ESG score s̄ is the Sharpe ratio of the optimal port-

folio given in the proof of Proposition 1: 

SR ( ̄s ) = 

μ′ x 
σ

= 

μ′ �−1 ( μ + π ˜ s ) 

σθ
. (43)

Using the last two equations in the proof of

Proposition 1 , 

SR ( ̄s ) = σθ = 

√ 

μ′ �−1 ( μ + π ˜ s ) 

= 

√ 

c μμ −
(
c sμ − c 1 μs̄ 

)2 

c ss − 2 c 1 s ̄s + c 11 ̄s 2 
. (44)
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The maximum Sharpe ratio clearly is attained by the 

tangency portfolio, which is proportional to �−1 μ. This 

portfolio has the ESG score and Sharpe stated in the propo- 

sition. This result can also be derived by differentiating 

the SR ( ̄s ) with respect to s̄ and considering the first- and 

second-order conditions (there are two solutions to the 

first-order condition). �

Proof of Proposition 3 . We have from the proof of 

Proposition 1 that x = 

1 
θ
�−1 ( μ + π ˜ s ) . Further, from the 

proofs of Propositions 1 –2 , we know that θ = 

1 
σ SR ( ̄s ) and 

σ = SR ( ̄s ) /γ . Combining these yields x = 

1 
γ �−1 ( μ + π ˜ s ) , 

where we recall that ˜ s = s − 1 ̄s . �

Proof of Propositions 4 –5 . These results follow based on 

arguments analogous to those in the first part of the proof 

of Proposition 1 using that, for any x ∈ X and a > 0 , we 

have ax ∈ X and e ( a x, s ) = e ( x, s ) . The optimization prob- 

lem can be written as 

max 
x ∈ X 

(
x ′ μ − γ

2 

x ′ �x + e ( x, s ) 

)

= max 
ē 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

max 
σ

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

max 
x ∈ X 

s . t . ē = e ( x, s ) 
σ 2 = x ′ �x 

(
x ′ μ − γ

2 

σ 2 + ē 

)
⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= max 
ē 

[ 
max 

σ

{ 
σ SR ( ̄e ) − γ

2 

σ 2 + ē 

} ] 
= max 

ē 

[
( SR ( ̄e ) ) 

2 

2 γ
+ ē 

]
(45) 

�

Proof of Propositions 6 –7 . For Proposition 7 , the equilib- 

rium condition with all investors of type-M is 

p = 

W 

γ
diag 
(

p i 
)
�̄−1 diag 

(
p i 
)

×
(

diag 

(
1 

p i 

)
μ̄ − r f + π( s − 1 s m ) 

)
. (46) 

This condition can be simplified by multiplying both 

sides by diag ( 1 
p i 

) : 

1 = 

W 

γ
�̄−1 
(
μ̄ − diag 

(
p i 
)
( r f − π( s − 1 s m ) 

)
= 

W 

γ
�̄−1 
(
μ̄ − diag ( r f − π

(
s i − s m 

)
p 
)
. (47) 

Solving this equation for the vector of prices p yields 

p = diag 

( 

1 

r f − π
(
s i − s m 

)) (
μ̄ − γ

W 

�̄1 

)
, (48) 

which proves Eq. (20) stated in the proposition. To trans- 

late this result to expected excess returns, we multiply 

both sides by diag ( 1 
p i 

) , yielding 

1 = diag 

(
1 

p i 

)
diag 

( 

1 

r f − π
(
s i − s m 

)) (
μ̄ − γ

W 

�̄1 

)
, (49) 
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and rearrange to obtain 

diag 
(
r f − π

(
s i − s m 

))
= diag 

(
1 

p i 

)(
μ̄ − γ

W 

�̄1 

)
. (50)

The vector of expected excess returns μ thus is given

by 

μ = diag 

(
1 

p i 

)
μ̄ − r f 

= 

γ

W 

diag 

(
1 

p i 

)
�̄1 − diag 

(
π
(
s i − s m 

))
. (51)

The expected excess return of the market portfolio

( p i 

1 ′ p ) is given by 

μm = 1 

′ diag 

(
p i 

1 

′ p 

)
μ

= 

γ

W ( 1 

′ p ) 
1 

′ �̄1 − 1 

′ diag 

(
p i 

1 

′ p 

)
diag 
(
π
(
s i − s m 

))
. 

(52)

That is, 

μm = 

γ
(
1 

′ p 
)

W 

var ( r m | s ) − π( s m − s m ) = 

γ
(
1 

′ p 
)

W 

var ( r m | s ) ,
(53)

where we use the definition of the ESG score of the mar-

ket s m = 

1 
1 ′ p p 

′ s . The expected excess return of security i

can be written as μi = z i 
′ μ using the i ’th unit vector z i =

( 0 , . . . , 0 , 1 , 0 , . . . , 0 ) , that is, 

μi = 

γ

W 

z i 
′ diag 

(
1 

p i 

)
�̄1 − z i 

′ diag 
(
π
(
s i − s m 

))
= 

γ
(
1 

′ p 
)

W 

cov ( r i , r 
m | s ) − π

(
s i − s m 

)
. (54)

Combining with the expression above for μm , we get 

μi = β̄i μ
m − π

(
s i − s m 

)
. (55)

Finally, when all investors are of type-A and choose

the tangency portfolio, we have π = 0 , which is seen from

Proposition 3 and the expression for π . 

For Proposition 6 , similar calculations show that prices

are given by 

p = 

1 

r f 

(
ˆ μ − γ

W 

ˆ �1 

)
(56)

and returns by the unconditional CAPM. Conditional ex-

pected returns are given by 

E 
(
r i | s ) = 

E 
(
v i s 
)

p i 
−
(
1 + r f 

)
= 

ˆ μi + λ
(
s i − s m 

)
p i 

−
(
1 + r f 

)
. 

(57)

Using the expression for the price, 

E 
(
r i | s ) = 

γ
W 

cov 
(
v i , v m 

)
+ λ
(
s i − s m 

)
p i 

= 

cov 
(
r i , r m 

)
var ( r m ) 

E ( r m ) + 

λ
(
s i − s m 

)
p i 

, (58)

where cov ( v i , v m ) 
p i ( 1 ′ p ) = cov ( r i , r m ) and 

γ ( 1 ′ p ) 
W 

= 

E( r m ) 
var ( r m ) 

. �
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