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their expectations with scientific projections rather than recent observations.
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1. Introduction

Scientists overwhelmingly agree that the climate is
changing because of human activity. The American Asso-
ciation for the Advancement of Science (2006) reported
that “the scientific evidence is clear: global climate change
caused by human activities is occurring now.” But public
opinion in the US remains mixed. As of 2016, less than half
of Americans believed that the earth is getting warmer due
to human activity, a number that has not budged much
since the Pew Research Center started asking the question
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in 2006." Views on climate change vary greatly across ge-
ography, political affiliation, educational status, and eco-
nomic sector (Leiserowitz et al., 2017; Howe et al.,, 2015).
Politicians in the US have questioned the evidence on cli-
mate change, with some famously calling it an “elaborate
hoax.”

Given the divergent beliefs about climate change, de-
bate persists about the accuracy of global climate models
and the extent to which agents incorporate these projec-
tions into their actions. We address these issues by ex-
amining how market participants update their expecta-
tions about climate over time. The Chicago Mercantile Ex-
change (CME) offers futures contracts for eight cities on
two main weather products: cooling degree days (CDDs),
which measure how much cooling is necessary during
hot temperatures in summer, and heating degree days
(HDDs), which measure how much heating is required
during cold temperatures in winter. The payoffs from

1 https://www.pewresearch.org/science/2016/10/04/
public-views-on-climate-change-and-climate-scientists/.
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these contracts depend on observed temperatures over the
course of a month. The contracts are traded before the
month in which the weather is realized and thus provide
a direct measure of the market’s view on the expected
climate.

First, we show that the futures market capitalizes
weather shocks, that is, deviations from climate averages,
in the two weeks leading up to such unexpected weather
deviations. This is consistent with Dorfleitner and Wim-
mer (2010) and the more general finding that for horizons
beyond 8-10 days, “the nature of temperature dynamics
simply makes any point forecast of temperature unlikely to
beat the climatological forecast at long horizons, because
all point forecasts revert fairly quickly to the climatolog-
ical forecast” (Campbell and Diebold, 2005, p.12). Futures
prices several weeks before the start of a month should re-
flect expectations about a month’s weather before the out-
comes can be known.

Second, we find that market expectations, as measured
by futures prices when weather outcomes are unknown,
have been changing at the same annual rate as tempera-
ture projections in the CMIP5 archive, the latest repository
in which various climate modeling groups made predic-
tions for 2006 onward. The time trend also aligns with the
observed annual change from weather station data. All find
significant warming as shown by an increase in CDDs in
summer and a decrease in HDDs in winter. Climate models’
predictions have materialized, especially on average, vali-
dating model projections.

Third, the futures market closely follows advances in
the climate literature. When we regress the trend in fu-
tures prices for each airport and contract month observed
over our sample period on the observed trend at the
weather station as well as climate projections, the latter
has the most explanatory power. Further, the futures mar-
ket seems to price in recent climatological advances that
were not available in the CMIP5 archive and have not been
detectable in weather station observations. Recent research
predicts that a shift in the jet stream will reduce late win-
ter temperatures in the northeastern US via an increase in
cold air from the Arctic (i.e., a polar vortex). Likewise, the
futures market has shown a significant increase in HDDs in
February. Together this suggests that market participants
are taking into account both global climate model output
and the latest research rather than simply projecting for-
ward past time trends.

Finally, we present evidence in the Online Appendix
how oceanic oscillations like El Nifio-Southern Oscillation
(ENSO) affect temperatures over the medium term across
the eight cities in our sample. Employing LASSO regres-
sions to select relevant oceanic oscillation indices, we find
that removing these large-scale effects reduces the year-to-
year variability in observed weather but does not change
the time trend. The observed warming trend is hence not
driven by oceanic drivers of natural variability in tempera-
tures but rather by increased greenhouse gas emissions.

In addition to contributing to the literature on the im-
pact of climate change on firms and financial markets, our
findings have relevance to climate adaptation. Economists
have estimated the benefits and costs from a changing
climate (Auffhammer, 2018). Many of the recent micro-
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level estimates relate outcomes of interest to random ex-
ogenous year-to-year weather fluctuations to obtain unbi-
ased damage estimates (Dell et al., 2014). While random
and exogenous year-to-year variation is preferable from a
statistical perspective, adaptation to a permanent change
in climate might mitigate some of the weather sensitivity
that is observed in response to unknown random weather
shocks. Agents should undertake adaptation investments
in response to anticipated permanent shifts in the climate
that are either unprofitable or infeasible for a one-time un-
known weather shock. However, before agents can adapt,
they first must form a belief about the extent to which
the climate is changing, if at all. This paper suggests that
agents, at least those participating in weather markets,
have been actively updating their beliefs about the extent
and geography of warming.

Our paper adds to several strands of literature. The first
examines the impact of weather fluctuations and climate
change on the corporate sector and financial markets. Cor-
porate earnings of several economic sectors are sensitive to
temperature fluctuations (Addoum et al., 2020), and under-
standing the extent to which financial markets are pricing
in climate change risks has implications for financial stabil-
ity (Carney, 2015). Some papers find that the stock market
underreacts to the impact of predictable climatic trends on
firms’ profitability and valuation (Hong et al., 2019), while
others show that real estate market and municipal bonds
do price in sea level rise (Bernstein et al., 2019) and agri-
cultural land markets capitalize climate change expecta-
tions (Severen et al., 2018). Weather derivatives can pro-
vide a useful hedge against such fluctuations as well as a
direct measure of the market’s expectation of future cli-
mate.

Second, studies have emphasized how climate policies
designed to limit emissions can affect firm profitability.
Anttila-Hughes (2016) finds that energy company valua-
tions respond to extreme events that may be evidence of
climate change. Meng (2017) shows how the stock mar-
ket incorporates changes in the likelihood of US carbon
regulation as measured by betting markets. Limiting emis-
sions may render a fossil fuel company’s marginal or most
costly reserves worthless if they can no longer be extracted
(McGlade and Ekins, 2015). Thus, expectations about future
climate policies that are themselves related to observed
cliamte trends are key to the energy sector’s profitability
and will be reflected in financial markets.

Third, another strand of the literature focuses on how
agents adjust their behavior in response to environmen-
tal forecasts (Rosenzweig and Udry, 2014; Neidell, 2009).
Shrader (2020) finds that fishermen update their beliefs
using El Nifio medium-range weather forecasts to make
optimal fishing decisions. Before El Nifio forecasts were
available, the cost of weather shocks was much higher
because fisheries could not adapt. On the other hand,
Burke and Emerick (2016) find that changes in agricultural
yields in response to observable long-term temperature
trends are not significantly different from yield changes in
response to random weather shocks. Some authors have
modeled how market participants learn about and adapt to
changing weather conditions. For example, Kala (2019) ex-
amines how Indian farmers dependent on monsoon pre-
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cipitation update their beliefs. Twitter reactions show that
people become habituated to extreme weather events as
they become more frequent (Moore et al., 2019).

Similarly, public opinion surveys ask respondents to
self-report their beliefs, which also seem driven by re-
cent weather events, especially extremes. Many studies
have shown that people’s beliefs about climate change
are strongly influenced by recent local weather conditions
(Myers et al., 2013; Deryugina, 2013; Akerlof et al., 2013;
Li et al., 2011; Zaval et al., 2014). Observed periods of cool-
ing can translate into climate skepticism (Kaufmann et al.,
2017). It is also possible that agents hold differing private
and public beliefs about climate change, especially if cer-
tain views on climate change are perceived as more expe-
dient.

What is common across much of the literature on cli-
mate change expectations is that researchers infer climate
beliefs indirectly by backing them out from observed in-
direct actions or by relying on stated responses. We add
to this literature by using a different revealed preference
approach to measure beliefs about climate change by an-
alyzing financial derivatives whose value directly depends
on expected weather. This allows us to observe the evolu-
tion of market expectations on warming by looking at the
price of futures contracts that are linked to future weather
outcomes.

2. Data

We first describe the financial data before discussing
the weather and climate data.

2.1. Financial data

Weather futures contracts are traded on the CME. The
products were first launched in the fall of 2001 and be-
came fully operational for the first full year in 2002.
Contracts are available for eight geographically distributed
cities across the US over our sample period 2001-2020.
Each city is linked to a specific weather station in the city
at one of the airports. These are Atlanta (ATL), Chicago
O’Hare (ORD), Cincinnati/Northern Kentucky (CVG), Dallas-
Fort Worth (DFW), Las Vegas (LAS), Minneapolis-Saint Paul
(MSP), New York LaGuardia (LGA), and Sacramento (SAC).
The location across the US is displayed in Online Appendix
Fig. Al. In the past more cities had weather markets, but
trading in several cities was halted due to a lack of lig-
uidity, while at the same time new cities like Portland and
Tokyo were launched as recently as 2019. Therefore, we fo-
cus on the eight US cities for which contracts were consis-
tently available through spring 2020.

The main participants in the weather market are insur-
ance companies and firms seeking to offset weather risk.
For example, an energy company may sell an HDDs con-
tract to mitigate the risk of lower demand for heating oil
due to a mild winter. Likewise, a citrus company may pur-
chase an HDDs contract to mitigate the risk of a winter
freeze. The other market participants are speculators who
take contract positions based on their expectations of fu-
ture weather. More generally, volumes in this market de-
creased in recent years due to the entry of reinsurance
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firms offering bespoke weather-based hedging services to
market participants.

The final settlement price of the futures contract is
based on the respective weather station HDDs or CDDs in-
dex for the month as reported by MDA Federal Information
Systems, Inc. Each degree day in a contract has a payout
multiplier of $20. For example, if a customer buys one July
CDDs contract for 300 CDDs, the cost would be $6,000. If
the realized cumulative CDDs for the month of July settled
at 330 degree days, the clearance value would be $6,600,
and the trader would reap a profit of $600 ($20 times the
increase of 30 degree days). Trading volume generally in-
creases in the two weeks prior to the start of a contract
month, with lower trade volume more than two weeks be-
fore the start of the contract month.

The weather contracts are based on cumulative HDDs
and CDDs in a given month. These are indexed to 65°F
(18 °C), the temperature considered the most comfortable
for humans, on average, and a common standard for utility
companies because cooling and heating systems tend to be
turned on above and below that level, respectively. For ex-
ample, a mean daily temperature of 85°F would count as
20 CDDs. These daily degree days are then summed over
the course of the contract month.

CDDs measure by how much daily average tempera-
tures T,y at airport a on day d exceed 65°F and thus re-
quire cooling, hence the name cooling degree days. The ex-
act formula to derive CDDgyp, for month m is obtained by
summing over all days d(m) of the month:

CDDgy = ) max{Tyy — 65, 0}.
d(m)

(1)

Likewise, HDDs measure by how much and for how long
temperature fall below 65°F and thus require heating. The
exact formula to derive HDDg, is

HDDgn = )~ max{65 — Tyq. 0}.
d(m)

(2)

For our baseline analyses, we use end-of-day daily fu-
tures prices obtained from Bloomberg terminals. Prices are
carried forward in the absence of market activity. For ex-
ample, if there is a recorded trade on June 17 at a price
of 300 CDDs for the July contract, followed by no trade
on June 18, the Bloomberg data will show a price of 300
again. Unfortunately, the volume data only include con-
tracts traded via the exchange and not private over-the-
counter block trades (Dorfleitner and Wimmer, 2010),2 and
it is missing for most days. Some data cleaning was neces-
sary because of “sticky fingers,” for example, sudden price
jumps by a factor of 10. The exact adjustments are listed
in Online Appendix Section Al.

The raw daily data we downloaded from the Bloomberg
terminals are displayed in Fig. 1 for the two airports with
the highest volume in CDDs: LGA and DFW. We pick two

2 Due to the illiquidity of the weather market, we cannot guarantee
that contracts were actually traded on days where the settlement price
provided by CME does not change. To ensure that only traded prices were
considered, we sometimes exclude time periods where the settlement
price never changes, but the results are robust to the inclusion/exclusion
of these days.
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Fig. 1. Futures prices around maturity The graphs display the time series of futures prices around maturity. Day 0 is the end of the month on which the
weather derivative is based; for example, day O for a June contract is June 30. The top row is for New York LaGuarida airport (LGA), and the bottom row for
Dallas-Fort Worth (DFW). The left column shows CDDs for July, while the right columns show HDDs for December. Years are color coded as shown in the
bottom legend. Price series that are flagged for quality issues are shown as dashed lines instead of solid lines. The gray-shaded area shows the period over
which we average futures prices in our baseline specification to derive market expectations, which is four weeks before the start of the month. Contracts
for the remaining airports and months are shown in Online Appendix Fig. A2.

representative months: the left column shows CDDs in July,
while the right column shows HDDs contracts for Decem-
ber. Contracts for the remaining airports and months are
shown in Online Appendix Fig. A2. Each graph displays the
annual prices series for roughly two-and-a-half months.
Day 0 is the last day of the month on which the con-
tract is based. Both the end of the month and the begin-
ning of the month are indicated by vertical dashed black
lines. The temporal extent ranges from 70 days prior to
the end of the contract month (roughly 40 days prior to
start of the contract month) to 10 days past the end of the
contract month. Years are color coded from blue (2001) to
red (2020). Prices generally do not move past the end of
the contract month (day 0) as all information has been re-
vealed. Most price volatility occurs one to two weeks prior
to the start of the contract month and within the contract
month. There are limited price changes more than two
weeks before the start of the contract month, as limited
information on weather shocks is revealed that the mar-
ket could incorporate that far out. These flat prices depict
market expectations of the climate before annual weather
shocks are realized.

The main finding of our paper is clearly visible in the
raw data: looking at futures prices a month before the start
of the contract month (i.e., the left side of each graph), we
see how prices for CDD contracts in the left column are
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generally drifting upward over the years (color coded from
blue to red), indicating an upward shift in the required
amount of cooling as it gets hotter. By the same token,
the right column shows prices for HDD contracts drifting
downward over the years, indicating a downward shift in
the expected amount of heating required.

While we do not have reliable volume data for the
Bloomberg terminal time series, Online Appendix Fig. A3
displays the fraction of days there has been a price change
for the two-months period ranging from one month prior
to the contract month to the contract month itself. It
shows how the number of day-to-day price changes in-
crease from 2001 to 2010, a likely indication that trading
volume is picking up, before declining again until 2020.
The decrease in volume is the reason that some of the
original contract cities are no longer offered.

We contacted the CME and obtained volume data for
the subset of the contracts shown in Online Appendix
Fig. A4. Note the reduction in the number of lines repre-
senting contracts relative to Fig. 1, our baseline data set
from Bloomberg. We display volume data for this subset
in Online Appendix Table Al. Panel A shows volume by
year. It is increasing from the start of weather derivatives
in 2002 to 2008, when sales for winter and summer con-
tracts combined topped US$ 2 billion per year. Volume de-
clines between 2008 and 2016, before another uptick in ac-
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tivity since 2017. Panel B aggregates the volume data by
airport. Volume is highest in both CDDs and HDDs for LGA
with a combined trading value of US$3.9 billion. The sec-
ond largest value for CDDs is for DFW, and for HDDs at
ORD. The smallest value is for Sacramento at US$ 0.2 bil-
lion. The combined traded value over all airports and years
for this subset of the data (and hence a lower bound) ex-
ceeds US$10 billion, a large enough amount to ensure that
the market should efficiently incorporate weather informa-
tion.

2.2. Weather data

We pair the futures data with weather data: both
weather station observations at the location associated
with each contract as well as gridded climate model pro-
jections.

For station data, we obtained the ID of the airport
weather station underlying each contract and downloaded
daily minimum and maximum temperatures from the
National Oceanic and Atmospheric Administration’s FTP
server. We then computed the daily mean by averaging the
minimum and maximum temperature before calculating
the degree days for the 65°F bound as given in Egs. (1) and
(2) above.

Climate projections were taken from the Coupled Model
Comparison Project (CMIP) repository, which asks various
modeling groups to simulate changing temperatures under
comparable assumptions. We rely on the 5th round CMIP5
archive where these groups predicted climate trends from
2006 onwards. We obtain daily values from NASA NEX-
GDDP, a data set of 21 models that were spatially down-
scaled to a common 0.5° grid and select the grid cell in
which the weather station is located. NASA NEX-GDDP has
data for two scenarios. Representative Concentration Path-
way (RCP) 4.5 assumes an additional energy flux of 4.5 W
per meter square. This is a moderate warming scenario in
which greenhouse gas emissions are reduced and radiative
forcing stabilizes such that the global mean temperature
increases by 1.8 °C (3.2°F) by 2100. Note there is large spa-
tial heterogeneity, and warming in the US is usually pro-
jected to be higher than the global average by a factor of
roughly two. RCP8.5, on the other hand, simulates major
warming where emissions continue to rise such that there
will be additional radiative forcing of 8.5 W per square
meter resulting in a global mean temperature increase of
3.7 °C by 2100. In the short term of our study period
(2001-2020), however, both models give similar projec-
tions. The models are predicted to diverge further toward
the end of the century as carbon emissions accumulate
over time.

Online Appendix Fig. A5 shows box plots for the num-
ber of CDDs and HDDs by month for the eight cities
with weather futures contracts. The red line displays the
weather station data, and the blue line shows the climate
model data. Both use data from 1950 to 2005, which was
the historical baseline period in the CMIP5 archive. There
is close alignment in the mean values as well variance
around the means in both data sets. Recall that the climate
models predict average temperature over the entire grid,
and hence might differ from the observed temperature at
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any given point (i.e., weather station) if there is spatial het-
erogeneity. For example, a city’s airport located close to a
mountain might have a different temperature than that of
the surrounding area when averaged over the entire grid.

We observe strong seasonality: more CDDs in the sum-
mer, and more HDDs in the winter. As expected, northerly
cities (Chicago, Minneapolis, New York) have relatively
more HDDs and less CDDs, while southerly cities (Atlanta,
Dallas, Las Vegas) have less HDDs and more CDDs. Across
the eight cities, there are very few occurrences of HDDs in
the summer months and CDDs in winter months, which is
why HDDs futures contracts are not traded in summer and
CDDs contracts are not traded in winter.

Online Appendix Fig. A6 plots the price of each weather
derivative at the end of the contract month against the re-
alized weather at the underlying weather station. The out-
put closely follows the 45-degree line, demonstrating that
the market is active enough to ensure weather outcomes
are fully priced in by contract close and that there are no
arbitrage opportunities.

3. Empirical analysis

We start by analyzing the timing of when futures
prices capitalize weather shocks in Section 3.1. Forecast-
ing and prediction skill of weather (short term) and
climate (medium to long term) are closely connected
(Auffhammer et al., 2013). Climate models build on a foun-
dation of short-term weather dynamics, and the same un-
derlying physical laws apply to the predictions of both
weather and climate models. If market participants are ac-
curately updating their longer-term beliefs based on cli-
mate warming trends, it would be expected that they
also accurately update their short-term beliefs based on
weather forecasts. The long-term trends are examined in
Section 3.2.

3.1. Capitalization of short-term weather shocks

Weather forecasts are widespread and freely available.
There has been a sustained improvement in weather fore-
casting across all prediction ranges over recent decades.
Bauer et al. (2015) present forecasting skill over time for
weather anomalies, defined as deviations from the average
climate; for example, it is 10°F hotter today than what it is
normally this time of the year. A score of one indicates that
the forecasting model explains 100% of the year-to-year
anomaly, while a score of zero implies it cannot explain
anything more than what is expected from the average
conditions for the season.® A 3-day forecast has improved
from a skill of 80% in 1981 to 98% in 2014. On the other
hand, a 10-day forecast (not offered in 1981) increased
from 30% in 1995 to 45% in 2014. Thus we would expect an
inverted U-shape in terms of the impact of weather shocks
on futures prices since long-term forecasts beyond 10 days

3 The score is defined as 1 minus the ratio of the root mean squared er-
ror in the full weather forecast model relative to the root mean squared
error of a baseline model that just predicts the average climatology. The
authors state that “Values greater than 60% indicate useful forecasts,
while those greater than 80% represent a high degree of accuracy.”
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have quickly diminishing value and since very short-term
forecasts should have already been incorporated into prices
given their certainty, aligning with Dorfleitner and Wim-
mer (2010) who find that weather forecasts only influence
futures prices up to 11 days into the future. After this
point, using the average outcome as prediction is just as
good. As such, anticipated changes in weather around one
week out should have the largest impact on current prices
in an efficient market.

To test this, we estimate when weather shocks capital-
ize into futures prices for the eight airports in our sam-
ple. In a first step, we remove the seasonality to obtain
weather shocks (anomalies), that is, deviations from the
average value that a rational market participant should ex-
pect. Specifically, we regress daily average temperature T 4
at airport a on day d on a constant «, as well as flex-
ible spline that is a function f of the day of the year.*
We also include a linear time trend y;, in the year y(d) as
the weather might be warming over time. The regression
equation is

Toa = ot + Baf(d) + Yoy (d) + €aa- (3)

The estimated seasonality for each airport BE f(d) is shown
in Online Appendix Fig. A7. Years are color coded to show
the linear trend over time. The annual increase has not
been uniform; for example, Las Vegas warmed faster than
Sacramento as there is a large distance between the red
line (2020) and the blue line (2001). The weather shock
on day d is simply the observed number of degree days
D(T,4) minus the degree days that would be expected at
the predicted average climate according to the seasonality
regression D(Tyq).”

In a second step, we then regress the change in futures
prices Ap.4 for contract c on day d, that is, the difference
between the closing price to that of the previous close,

on lags and leads of daily degree day shocks Aﬁc[d\ﬂ] =
[D(Tyasep) ~ D(Tiqry) | for days that fal within the con-

tract month.5

21
Apeg = otc + Z B [D(Tc[d+r]) - D(Tc[d+t])] +é€q.  (4)

7=-7

4 To address leap years, we normalize the start of the year on January
1st to equal zero and the end of the year on December 31st to equal
one. The five knots of the restricted cubic spline are at 0.05, 0.27, 0.50,
0.72, and 0.95. This will give us four variables for the phase of the year
f(d). We force the seasonality on December 31st to equal January 1st to
guarantee continuity by running a constraint regression.

5 While degree days are a nonlinear transformation when temperatures
cross the truncation point at 65°F, the truncation is rarely observed; that
is average daily temperatures are generally above 65°F in the summer and
below 65°F in the winter. See Online Appendix Fig. A5 that shows there
are very few HDDs in the summer and CDDs in the winter. Expected de-
gree days are close to degree days at the expected temperature. We ob-
tain similar results whether we fit the seasonality separately for HDDs
and CDDs or jointly for average temperature. We focus on the latter to
estimate one unique seasonality rather than two separate regressions for
summer and winter.

6 A contract ¢ specifies how many degree days will be observed at air-
port a in month m of year y, for example, CDDs in June 2015 at LaGuardia
airport. For a June contract, the weather shocks for days d + t that are
outside the month of June are set to zero as the price of a June contract
is solely based on weather in June.
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One particularity about this regression is that while tem-
perature data is available every day, prices are only avail-
able on trading days. As a result, the coefficient f; is for
the sum of all weather shocks after the previous close and
today’s weather. All other B; use the weather on a sin-
gle day, which is T —1 days past the current close for
leads (t > 0) and t days before the previous close for lags
(t < 0).7 The coefficient By is normalized to be zero.

In line with the discussion on forecasting skill, future
weather shocks should be capitalized into prices when
weather forecasts can predict them, so we expect f; >
0 for the next two weeks t <[1,14]. After that point,
weather forecasts become unreliable and not better than
the average climate (Campbell and Diebold, 2005). Past
weather is_already known to market participants and
hence the f; should be zero for t < 0.

The left panel of Fig. 2 shows individual coefficient es-
timates B; with the expected hump-shaped pattern. The
black line shows the point estimates with the 95% con-
fidence band added in gray. As expected, past weather
shocks have no effect on futures prices, while coefficients
for the next two weeks are generally positive as weather
shocks get anticipated by the market and priced in prior
to realization. Beyond day 7 = 14, the coefficients become
insignificant again as weather forecasts beyond this time
period are generally not better than the average climatol-
ogy for the location. The right panel of Fig. 2 makes this
point more visible by plotting the cumulative sum of co-
efficients relative to v =0; that is Y ;_; By for T > 0 and
Z,;]T B; for T < 0. The cumulative sum of coefficients for
negative T show no trend and the 95% confidence band in-
cludes zero. On the contrary, the line increases from 0 to
1 over the next two weeks as 100% of weather shocks get
capitalized into the futures price. The curve flattens around
14 days into the future as weather forecasts become unre-
liable.

Online Appendix Fig. A8 splits the regression into HDDs
and CDDs and finds very similar relations. The one ex-
ception is that the coefficient estimate S_; is positive for
CDDs, which measure required cooling on the previous
day. This is not surprising as the daily maximum, which
is crucial for the amount of required cooling, is generally
observed in the late afternoon after the market closes and
hence would not get priced in until the next day.

One can invert the estimated relation to obtain how
futures prices predict future weather. We can also run
the opposite regression for illustrative purposes: do price
changes in the futures market predict future weather
shocks. In other words, are price changes a reliable
weather forecast? We run the following inverse regression
problem:

Tl
3 [D(Tc[dﬂp —D(quﬁp] =0+ BAPy+ €. (5)

T=Tp

7 For example, if day d is a Monday, f; includes the sum of the de-
gree day shocks for Saturday, Sunday, and Monday; B, is the degree days
shock on Tuesday; B is the degree day shock on Wednesday, etc. On the
other hand, B_; is the degree day shock on the previous Friday.
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Fig. 2. Capitalization of weather shocks This figure displays the/lgults from a distributed lag model. Daily futures price changes Ap. for contract ¢ on
day d are regressed on 21 leads and 7 lags of weather shocks AD 4.}, that is, the difference compared to the average climate on day d + t. The regression
equation is Apy = ¢ + Ziq B Aﬁdd\ﬂ] + €¢q and uses 49,019 observations. The left graph shows the estimated coefficient B: for the weather shock on
a particular lead/lag t. Negative values of t on the horizontal axis indicate weather occurring on an earlier day (in the past), while positive values depict
weather at a future date. The right graph shows k1 Bk, the cumulative sum of coefficients from day 0 onwards for positive values of the horizontal
axis and Z,j:lt By, the cumulative sum of coefficients before day O for negative values of the horizontal axis. The regression pools CDD contracts in June-
September and HDD contracts for November-March. The estimated coefficients for leads 7 > 1 and lags T < —1 are on the weather shock for one day, but
the coefficient shown for 7 =1 is for the sum of shocks from today to the previous close given that futures are not traded every day.

The regression results are shown in Online Appendix Ta-
ble A2. Each entry is from a single regression of the sum
of future weather shocks ty — 7y days into the future on
today’s price change in the weather derivative. Different
rows vary the time period tg — 77. The first column pools
all airports, and the remaining eight columns run the re-
gression by airport. We find that price changes predict
weather shocks over the next two weeks, especially days
4-11, the sweet spot of weather forecasts, but cannot pre-
dict weather shocks more than two weeks in advance.®
The coefficient on weather shocks three weeks into the fu-
ture (15-21 days) is not significant.

3.2. Capitalization of long-term weather trends

We now turn to our main analysis of market expecta-
tions of climate change. With weather futures, we must
be careful to separate price changes driven by short-term
weather forecasts and those reflecting longer-term market
beliefs on warming. Some shocks are partially forecastable
over the course of months based on oceanic-atmospheric
phenomena like ENSO or the North Atlantic Oscillation
(NAO). Ideally, we would use futures prices quoted well be-
fore the contract’s delivery month. However, for the same
reason that weather is challenging to forecast far in ad-
vance, trading does not pick up until close to the contract
delivery month, and early dated prices may not be repre-
sentative of the market’s true expectation given the illig-
uidity.

8 The regression should be considered with caution as the reverse
regression problem can lead to biased coefficients. In the climate lit-
erature, the width of tree rings is often taken as a temperature
proxy for past temperatures before weather stations were available. As
Auffhammer et al. (2015) point out, weather influences tree rings. Run-
ning the inverse regression where temperature is regressed on tree rings
will lead to biased coefficients and predictions with artificially low vari-
ance.
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Balancing these two tradeoffs, our baseline model uses
average futures prices pgmy of contract c¢ for airport a
in month m of year y. The average price is taken the
fourth week (28-22 days) prior to the start of a contract
month, for example, the average price between June 3,
and June 9, 2015 for a July 2015 CDDs contract in Atlanta.
This ensures that prices reflect future expectations and not
contemporaneous weather as confirmed in the previous
section.

3.2.1. Linear time trends

In the baseline we pool four summer months (June-
September) in the CDDs regression and five winter months
(November-March) in the HDDs regression. We fit a simple
linear trend in the year y after including airport-by-month
fixed effects aqm, for example, a fixed effect for June con-
tracts in Atlanta. We cluster the error terms for a particular
month m as they might be subject to the same common
weather shock.

(6)

Table 1 shows the predicted annual change E in column
(1a). Panel A shows that, on average, prices increased by
$2.4 per year for each of the four summer months, June to
September, or $10 per year for the combined four-month
period. This annual increase is statistically significant at
the 1% level. Since our data set spans 20 years, the price
for a CDD contract increased by roughly $50 since 2001
for each of the monthly summer contracts. Recall that the
payout of the weather derivatives has a multiple of 20, so a
price increase of $50 implies a change in payout by $1,000
over our sample period. Panel B shows that the price for
a HDD contract declined, on average, by $1 per year, or $5
for the five-month span from November to March. It is sig-
nificant at the 5% level.

Columns (b)-(d) replicate an equivalent analysis us-
ing the weather station and climate model data. The de-
pendent variable is no longer the futures price pgmy but

DPamy = Oam + By + €amy-
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Table 1
Linear time trends in degree days.
(1a) (1b) (1c) (1d) (2a) (2b) (20) (2d)
Panel A: CDDs June-September
Trend 2.432%* 2.998%* 2.286%* 2,774 2.148* 2.676% 2.167* 2,432
(0.160) (0.887) (0.169) (0.174) (0.330) (0.772) (0.173) (0.160)
Observations 522 522 522 522 222 576 576 522
Panel B: HDDs November-March
Trend 1.000* 2.081 1.662+ 1.854% 1.175% 1.677 1.734* 1.000%*
(0.415) (1.723) (0.354) (0.370) (0.573) (1.524) (0.314) (0.415)
Observations 676 676 676 676 322 760 760 676
Panel C: HDDs November-March (excluding February in Northeast)
Trend 1.719% 1.856 1.527+ 1.710%* 2.224% 1.610 1.643" 1.719%
(0.384) (1.731) (0.362) (0.336) (0.478) (1.529) (0.329) (0.384)
Observations 604 604 604 604 281 684 684 604
Data Futures Station RCP4.5 RCP8.5 Futures Station RCP4.5 RCP8.5
Years Common Common Common Common Traded All All All

This table reports the estimated annual increase/decrease in degree days B Each entry is from a separate regression where degree days Dgmy at airport a
for month m in year y are regressed on airport-by-month fixed effects as well as a linear time trend: Dgmy = Qtam + BY + €amy. Panel A regresses CDDs for
the summer months June-September, while Panels B and C use HDDs for November-March. Panel C excludes February for the four northeastern airports
in Online Appendix Fig. Al. The data set ranges from winter 2001/2002 through winter 2019/2020. Columns (a) uses the average futures price Pamy four
weeks before the start of each contract month, for example, the average price between May 4, and May 10, for a June contract. Columns (b) uses observed
station-level data for the month, while columns (c) and (d) use climate model projections in the NASA NEX-GDDP database under the RCP4.5 and RCP8.5
scenarios for the month. Columns (1a)-(1d) estimate the trends for a consistent set of observations where futures data are available. Columns (2a)-(2d)
conduct sensitivity checks to the included years. Columns (2a) exclude contracts where the price did not change during the fourth week preceding the
contract month. Columns (2b)-(2d) include all years even if futures data are not available. Stars indicate significance levels: * 10%, ** 5%, *** 1%.

the number of degree days at the weather station or cli-
mate grid. Columns (1b)-(1d) hold the set of observa-
tions constant and only include months with available fu-
tures price data. Column (1b) uses the observed degree
days for the contract month from the underlying station
data as the dependent variable. The observed trends (an-
nual changes) are larger in magnitude with an increase of
three CDDs per year during the summer and a decrease
of two HDDs during the winter. The standard errors are
much larger given the greater year-to-year swings stem-
ming from random weather fluctuations. As a result, trends
in observed weather are not significantly different from
those anticipated by the futures market as shown in col-
umn (1a). The smaller standard errors for futures prices
relative to the station-level data also suggest that we are
correctly measuring longer-term market expectations and
not just annual weather realizations, which are much nois-
ier. Columns (1c) and (1d) show average trends per month
in the NASA NEX-GDDP data set averaged across the 21 cli-
mate models for the RCP4.5 and RCP8.5 scenarios, respec-
tively.

While columns (1a)-(1d) intentionally keep the set of
city-year observations constant, columns (2a)-(2d) repli-
cate the analysis with different subsets of the data. First,
to address concerns about market illiquidity, column (2a)
excludes observations where there was no price change
in the week over which prices are averaged, that is, the
fourth week prior to the start of the contract month in
our baseline specification. This exclusion reduces the sam-
ple size by roughly half but results in point estimates of
similar magnitude to those in column (1a). The time trends
are statistically different from zero and not statistically dif-
ferent than the estimates in column (1a). The reduction in
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observations in column (2a) can be explained by the fact
that we are taking average prices over the fourth week
prior to the start of the contract month, a period when
limited information about the eventual weather outcome
is available beyond the climate normals. We hence do not
expect many price changes, which happen when new in-
formation gets incorporated. Nevertheless, it is reassuring
that the time trends are similar whether there is a price
change (and hence update) or not. Second, to address con-
cerns about the endogeneity of this market, for example,
if contracts are traded more in particularly cold or hot
years as firms realize they need a hedge, columns (2b)-
(2d) use all available months with weather station and cli-
mate model data (even if no futures price data existed) and
again find very similar annual changes to those in columns
(1b)-(1d).

So far we have pooled all months of a season as
well as each airport into a single regression. Online Ap-
pendix Tables A3 and Table A4 relax this assumption to
examine heterogeneity by geography and month. Each ta-
ble presents the pooled results from Panels A and B of
Table 1 in the top row of the corresponding panel for ref-
erence. Online Appendix Table A3 allows time trends to
differ by airport while still pooling all summer or winter
months, and Online Appendix Table A4 allows time trends
to differ by month while still pooling all airports. We ob-
serve some differences by airport; for example, in column
(1a) the futures market predicts warming in Las Vegas
above the national average in both winter and summer,
and below-average warming in Chicago and Sacramento
in the summer, all at the 1% significance level. All signif-
icant time trends have the same sign as the national anal-
ysis, that is, more CDDs in the summer and fewer HDDs
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Table 2
Sensitivity of linear trend to when expectations are taken.
Q) (2) (3) (4) (5) (6)
Panel A: CDDs June-September
Trend 2.4571% 2.428%* 2.432%= 2.385% 2.431%* 2.448*
(0.147) (0.142) (0.160) (0.189) (0.239) (0.314)
Observations 520 522 522 522 522 522
Panel B: HDDs November-March
Trend -0.905* -0.900* -1.000* -1.224 -1.356* -1.628*
(0.408) (0.405) (0.415) (0.431) (0.482) (0.697)
Observations 672 676 676 676 676 676
Panel C: HDDs November-March (exl. Feb in NE)
Trend -1.656"* -1.642% -1.719 -1.908* -2.077 -2.202%
(0.371) (0.363) (0.384) (0.414) (0.465) (0.727)
Observations 600 604 604 604 604 604
Airport FE Yes Yes Yes Yes Yes Yes
Weeks prior 6 5 4 3 2 1

This table shows a sensitivity analysis of column (1a) of Table 1, now column (3), to the time window over which futures prices are averaged to evaluate
expectations. The last row displays how many weeks prior to the start of the contract month the futures prices are averaged over, ranging from one to six

weeks. Stars indicate significance levels: * 10%, ** 5%, *** 1%.

in the winter, although the winter time trends sometimes
become insignificant, especially in the northeastern subset
of airports (CVG, LGA, MSP, ORD).? In column (1b), none of
the time trends in weather station data differ significantly
by airport, although they are estimated with more noise
due to the large year-to-year variability. In columns (1c)-
(1d), the climate models show below-average warming in
Sacramento in the RCP4.5 data. In summary, while there
are small differences, there does not seem to be a system-
atic significant difference by airport.

The story is different when examining heterogeneity
by month in Online Appendix Table A4. Futures prices
show a significant positive annual increase for February
HDDs, suggesting an expectation of colder temperatures.
It is highly significant at the 1% level. This finding is pri-
marily driven by regional heterogeneity. Online Appendix
Fig. A10 shows time trends per month after separating
the eight airports into a northeastern quadrant (CVG, LGA,
MSP, ORD) and the remaining four (ATL, DFW, LAS, SAC)
in the south and southwest. The February cooling trend
(positive increase in HDDs) is only observed for the north-
eastern quadrant in the futures data. Since we are splitting
the sample further, the estimated time trends become less
precisely estimated, but February cooling is neither sup-
ported by recent weather observations nor climate runs in
the CMIP5 archive. All other winter months either show
a significant negative time trend or an insignificant time
trend in HDDs.

The futures market may be incorporating recent infor-
mation about a shift of the polar vortex that was not avail-
able at the time of CMIP5. Recent studies suggest that
melting ice sheets destabilize the jet stream, leading to
an increased frequency of stable weather patterns bringing
cold arctic air to Europe and North America (Francis and

9 The winter time trend for Sacramento is also insignificant, although it
is less traded than other contracts and the summer time trend was also
closer to zero.
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Vavrus, 2015). (Zhang et al., 2016, p.1094) conclude that
the “Arctic polar vortex shifted persistently towards the
Eurasian continent and away from North America in Febru-
ary over the past three decades. [... ] Our analysis reveals
that the vortex shift induces cooling over some parts of the
Eurasian continent and North America which partly offsets
the tropospheric climate warming there in the past three
decades.” Kim et al. (2014, p.1) note that “the mechanism
that links sea-ice loss to cold winters remains a subject of
debate,” so it remains an active topic of research.

One crucial paper for our analysis is Charlton and
Polvani (2007), who more generally examine a phe-
nomenon called stratospheric sudden warming (SSW) and
its relation to the troposphere, specifically the polar vor-
tex. The authors note that “given the prominent role of
SSW events, it is somewhat surprising that relatively few
attempts have been made to establish a comprehensive cli-
matology of SSWs. [p. 450]” The authors proceed to do so
in two accompanying articles in the Journal of Climate in
2007 and operationalize how SSW events in January and
February in the stratosphere can influence weather in the
troposphere.’® A fully rational market would incorporate
this new finding, an issue we return to in the next section
where we present nonlinear trends and find an uptick in
the 2007-2008 winter immediately following publication.

Before we do so, Panel C row of Table 1 replicates the
analysis for HDDs from Panel B after excluding February

10 The authors write: “A useful analogy might be drawn at this point
with the atmosphere-ocean system: in the same way as understanding
and successfully modeling the El Nifio-Southern Oscillation phenomenon
is of primary importance for the atmosphere-ocean system, understand-
ing and successfully modeling stratospheric sudden warming events is
of primary importance for the stratosphere-troposphere system. [p.450]”
ENSO similarly allows a weather forecast with a lead time of more than
four weeks; that is the futures data might be picking up relevant infor-
mation of how a year’s weather is shifting. Online Appendix Section A2
finds that oceanic indices like El Nifio are not a major factor of the ob-
served warming trend.
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Fig. 3. Nonlinear time trends in futures prices and weather This figure estimates nonlinear time trends using restricted cubic splines in time (knots at
2003, 2008, 2013, and 2018) on the residuals, which are obtained by subtracting airport-by-month fixed effects S,n among the eight airports and four
summer months (June-September) in the left graph or eight airports and five winter months (November-March) in the right graph, excluding February for
the four northeastern airports. The green line uses futures prices four weeks before the start of the contract month. The red line shows the results for the
observed weather station data. The blue lines use climate model output from NASA NEX-GDDP. In each case we subtract the average for the airport and
month (i.e., airport-by-month fixed effect). The horizontal axis reports the year a season ends, winter 2001/2002 is recorded as 2002. The 95% confidence
bands are added as shaded areas. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

contracts for the four northeastern airports. While the ex-
clusion has very limited effect on the estimated annual de-
crease in monthly HDDs for the regression using weather
station data or climate model outputs in columns (b)-(d),
it changes the coefficient on the annual decrease in futures
prices in column (a), making it much more closely aligned
with the annual changes in observed weather and climate
model output.

We present a final sensitivity check of the observed fu-
tures price trends to the window over which the prices are
averaged in Table 2. Our baseline uses prices that are av-
eraged over the fourth week prior to the start of the con-
tract month. Prices at this point are mostly stable as shown
in Fig. 1 because new information on the annual shocks
are not yet available. The six columns in Table 2 repli-
cates the analysis by averaging anywhere between one to
six weeks prior to the start date of the contract month.
The time trend on CDDs in Panel A is completely insen-
sitive to the chosen time window and very stable around
an additional 2.4 CDDs per year for each of the summer
months. The time trend on HDDs in Panel B and Panel
C are very similar whether we average prices six, five, or
four weeks in advance of the start of the contract month.
There is a slight uptick as we get closer to the start date of
the contract month, suggesting an even larger annual de-
cline, although the difference is not significant given the
larger standard errors. The overall robustness of the rela-
tion across the time periods supports the idea that mar-
kets expected a consistent increase in the need for cooling
in the summer and a decrease in the need for heating in
the winter.

3.2.2. Nonlinear trends

Fig. 3 relaxes the linearity assumption of the time trend
and instead plots a semiparametric regression of the resid-
uals after removing airport-by-month fixed effects ogny in
Eq. (6) to account for different average monthly climates
(i.e., June in Atlanta is hotter than June in Minneapolis).
We use restricted cubic splines to allow for more flexi-
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ble trends."" The lines in green, red, blue, and cyan cor-
respond to the variables listed in columns (1a)-(1d) of
Table 1 (Panel A for CDDs and Panel C for HDDs), respec-
tively, that is, residuals from the weather futures prices,
weather station outcomes, and climate projections under
RCP4.5 and RCP8.5.

The futures prices and climate model output show a
steady upward trend in CDDs and a downward trend in
HDDs. The trends on the weather station data (red lines)
are less smooth for both cooling and heating, partly be-
cause of the noisiness inherent in year-to-year swings in
weather realizations that are larger than predicted average
outcomes in the other data sets. For example, the winter
2017/2018 was especially warm, leading to a sharp drop in
HDDs for that year. There also seems to be a short-term
plateau in the observed warming trend around 2010, but
the long-term effects over the 20-year period are similar
across data sets. For both cooling and heating, the green
lines showing futures price trends closely follow the cyan
and blue lines of the climate model projections and not the
red lines. This suggests that beliefs are not myopically up-
dated based on recently observed weather but are rather
tied to the smooth warming trend projected by climate
models and observed in longer-term station data.

In the previous section we found a statistically signifi-
cant cooling trend in February futures prices for the four
northeastern airports. To show this, we again relax the
linearity assumption in Fig. 4 and plot the residuals of
February prices four weeks before the start of the con-
tract month after removing airport fixed effects. We then
add a trend line using the same restricted cubic splines in

11 The spline knots are at 2003, 2008, 2013 and 2018. Online Appendix
Fig. A11 presents locally weighted lowess regression of the same resid-
uals. Specifically, we apply STATA's lowess command to the annual av-
erage of the residuals. We first average the monthly residuals per year
since a locally weighted regression with several observations in the same
year would need to arbitrarily pick which of the month to include in the
local average. The point estimates are similar to the spline regression,
which we use going forward because they allow us to construct confi-
dence bands.
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Fig. 4. Nonlinear time trend in February futures at northeastern airports This figure estimates nonlinear time trends using restricted cubic splines in time
(knots at 2003, 2008, 2013, and 2018) on the residuals of February contracts among the four airports in the northeastern quadrant in Online Appendix
Fig. Al. Residuals are obtained after removing airport fixed effects and are displayed for the four airports. The solid line uses futures prices four weeks
before the start of the contract month. The 95% confidence band is added as shaded area. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

time as well as the 95% confidence band. We observe an
almost linear uptick in residuals between 2007 and 2012,
which is consistent with the publication of Charlton and
Polvani (2007) a study in the premier climatology journal
that presents a novel comprehensive climatology to predict
the “polar vortex.” While we cannot be sure of when the
market became aware of various findings in the scientific
literature, it is striking that starting around 2007, February
becomes the only month where the futures markets pre-
dicts a cooling in the short term that eventually diminishes
as anthropogenic warming becomes dominant.

3.2.3. Comparing spatial and temporal heterogeneity

The previous section has shown that the market in-
corporated a unique subseasonal cooling dynamic for part
of the US. We extend this type of analysis further by ex-
amining whether the observed heterogeneity in the time
trend mostly aligns with climate model output or observed
station-level trends. This allows us to contrast whether fu-
tures markets reflect knowledge about climate model pro-
jections or simply assume the continuation of observed
time trends. While all data sets show similar average time
trends, the spatial and temporal heterogeneity varies.

Intuitively, if traders rely mostly on recent observed
trends, we would expect that airports and/or contract
months that show larger than average warming in the
station-level data between November 2001 and March
2020 would also have larger than average annual changes
in futures prices as well. On the other hand, if market
participants mostly respond to climate model projections,
we would observe the distribution of time trends to more
closely align with what is observed in the climate model
output.
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To test this, we estimate time trends Bqm that are air-
port and month specific instead of the common trend f
used in Eq. (6):

(7)

We run this model with futures price data to obtain ,B({m,
observed weather station data to obtain 83, and the cli-
mate model output under RCP4.5 to obtain B&5 and RCP8.5
to obtain 882).2 In a second step we then regress the es-
timated time trend in the futures data on the other trends:

DPamy = Oam + Bamy + €amy-

(8)

If market participants are just incorporating the average for
each airport-by-month, we would only expect the constant
o to be significant, as it picks up the common average. On
the other hand, if futures prices incorporate the observed
heterogeneity in time trends found in the station-level data
or climate model output, we would expect as, 45, OF g 5
to be significant.

It should be noted that it is much harder to predict spa-
tial heterogeneity in warming than it is to predict average
trends because of all the localized feedback loops of the
climate system. The average trend is given by a simple bal-
ance of energy calculation. For example, if one increases
the burner under a pot of water, the average temperature
will increase, but it is much harder to predict where this

Bim = o + s B + ctas B2 + g 5 P8R + €am.

12 We use all monthly observations from November 2001-March 2020 in
the station and climate model data, even if the futures data is not avail-
able. Since the weather station data are more variable (it measures actual
outcomes versus averages among climate models), we include as many
observations as possible in order not to unfairly penalize the station-level
data by making the time trend more variable.
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Table 3
Comparing spatial and temporal heterogeneity in trends.
(1a) (1b) (1c) (1d) (2a) (2b) (20) (2d)
Panel A: All years

Trend at weather station 0.251* 0.135 0.302%+ 0.137
(0.101) (0.113) (0.100) (0.105)

Trend in NEX-GDDP: RCP4.5 0.628** 0.432 0.840* 0.627
(0.155) (0.474) (0.137) (0.426)

Trend in NEX-GDDP: RCP8.5 0.501" 0.066 0.666"** 0.080
(0.126) (0.392) (0.120) (0.376)

Panel B: Years 2006-2020

Trend at weather station -0.056 -0.130* -0.014 -0.107*
(0.054) (0.058) (0.065) (0.063)

Trend in NEX-GDDP: RCP4.5 0.175 0.098 0.422 0.262
(0.260) (0.295) (0.318) (0.323)
Trend in NEX-GDDP: RCP8.5 0.346* 0.457** 0.400** 0.415%*
(0.167) (0.166) (0.172) (0.153)

Panel C: Years 2011-2020

Trend at weather station -0.037 -0.046 -0.062 -0.062
(0.049) (0.046) (0.056) (0.052)

Trend in NEX-GDDP: RCP4.5 0.158 -0.034 0.159 -0.033
(0.192) (0.186) (0.197) (0.188)
Trend in NEX-GDDP: RCP8.5 0.716 0.730%* 0.733% 0.737+*
(0.155) (0.162) (0.166) (0.168)

Observations 72 72 72 72 68 68 68 68

This table examines spatial and temporal heterogeneity in various data sources. A separate linear time trend E; is fit for each month and airport:
Damy = Qam + Bamy + €amy. We then regress the trend in the futures data ﬁﬂfm on the trend in the weather station data ,BE, as well as the trends in the

climate model output B>, 88> by NASA NEX-GDDP RCP4.5 and RCP8.5, respectively. Columns (1a)-(1d) include all months (November-March for HDDs
and June-September for CDDs). Columns (2a)-(2d) exclude February for the four northeastern airports. Panels vary the years over which the time trends

are estimated. Stars indicate significance levels: * 10%, ** 5%, *** 1%.

extra energy will show up and how it will spread across
the volume of water. Similarly, changes in wind patterns
might lead to higher warming in some areas while reduc-
ing it in others (Hsiang and Kopp, 2018). February cooling
due to the polar vortex over eastern North America goes
hand-in-hand with higher-than-expected warming in the
Arctic. Cooling in East Coast cities does not refute that the
globe is warming, which it is in total, but rather reflects
the uncertainty on where the extra energy manifests as jet
streams shift.

The results are given in Table 3. Columns (a)-(c) include
each estimated time trend in the weather/climate data
one at a time, while columns (d) jointly include all three.
Columns (1a)-(1d) include all 72 airport-month combina-
tions of the 8 airports and 9 months: June-September for
CDDs in the summer and November-March for HDDs in
the winter. Columns (2a)-(2d) exclude February for the
four northeastern airports for a total of 68 observations.

Panel A pools all observations from November 2001-
March 2020 in the estimation of the Bqm. The coefficient
on the climate model output in columns (b) and (c) is
consistently larger than for the heterogeneity actually ob-
served in the weather station data over the same pe-
riod. When we include all three in column (d), they are
no longer individually significant given the high degree
of multicollinearity, but climate model output under the
RCP4.5 scenario has the largest point estimate.

Panel B and Panel C limit the observations to 2006-
2020 and 2011-2020, respectively, in the calculation of the
trends Bqm. The reason is twofold: first, climate models in
the CMIP 5 archive used 1950-2005 as the baseline to cal-
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ibrate their models. By limiting the data to a period past
2005, the model should predict completely out of sam-
ple. Note, however, that we are using the actual observed
climate trends from the weather station data 83, so the
climate model would simply incorporate some of the in-
formation that is in the station-level data. Since it took
climate modeling groups several years to run the models
before they were posted, Panel C further limits the time
window to after 2010. Second, the pace of global warm-
ing slowed between 1998-2012 and then picked up again
around 2012.

Both Panel B and C show that the spatial heterogeneity
in trends in the futures data is better aligned with the het-
erogeneity in the climate model output rather than with
the trend at the underlying weather station. For this subin-
terval of accelerated warming, the heterogeneity found in
RCP8.5 is a better predictor than RCP4.5. On the one hand,
this is not surprising as the early 2000s mostly relied on
climate projections from the Intergovernmental Panel on
Climate Change (IPCC) fourth assessment report that did
not include RCP8.5. On the other hand, as we have argued
above, the futures market was quick to pick up on scien-
tific advances related to the polar vortex. Since the IPCC
reports are based on published studies, much of the under-
lying theory might have also been available to interested
parties in the early 2000s. We lack a credible proxy for
when information is received by the market, so we cannot
directly test when market participants update their view
on which climate model to follow.

It is noteworthy that across all the time periods con-
sidered in Panels A-C, the heterogeneity in the futures
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Fig. 5. Predicted change in degree days in climate models This figure shows nonparametric time trends by airport averaged over the 21 climate models in
the NASA NEX-GDDP database. The y-axis gives the predicted average change in monthly CDDs or HDDs. The top row shows the results for the change in
monthly CDDs in the summer (June-September) and the bottom row for the change in monthly HDDs in the winter (November-March). The left column
uses the predictions under the RCP4.5 scenario, while the right column uses RCP8.5. Specifically, a nonparametric lowess regression is fit to the annual
average of the monthly residuals after removing airport-by-month fixed effects.

price trends more closely mirror climate models than the
eventual weather realizations. Combined with the uptick in
February futures prices that is not supported by station-
level observations, we conclude that market participants
are using climate models, or some related source of infor-
mation, to update their beliefs on future weather rather
than just projecting forward historical trends. Moreover,
as Online Appendix Section A3 shows, previous warm-
ing trends in the early part of the 20th century have
plateaued, and simply forecasting that past trends will con-
tinue rather than using climate model projections would
be a risky endeavor for investors.

Warming trends are predicted to diverge further out
in the future as shown in Fig. 5, which displays climate
model output through 2100. We again remove airport-by-
month fixed effects and then average the residuals over the
four summer months (June-September) or the five win-
ter months (November-March). The top row again shows
CDDs, while the bottom row shows HDDs. The left column
shows nonparametric warming paths under the RCP4.5
scenario, while the right column uses RCP8.5. For example,
the reduction in HDDs in Minneapolis under the RCP8.5
scenario (bottom right graph) is almost twice as large as
for Atlanta.

4. Conclusion

To the best of our knowledge, this paper is the first to
use a direct measure of climate change expectations as de-
rived from weather-based futures contracts. The evidence
shows that financial markets incorporate warming trends
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that are consistent with climate model projections. We find
the market has been accurately pricing in a warming cli-
mate and that this began occurring at least since the early
2000s when the weather futures markets were formed.
The market also seems to price in recent scientific find-
ings like the polar vortex that can lead to February cooling
over the eastern US, an effect neither present in the CMIP5
archive nor detectable in recent weather station observa-
tions.

Our findings have direct implications for firms and fi-
nancial markets. Recent studies have highlighted how the
valuations of companies and entire industries are sensi-
tive to weather fluctuations and climate change risk. Since
efficient and profit-maximizing behavior requires an ac-
curate assessment of predicted warming, weather mar-
kets can provide companies with pertinent information
on future weather and climate trends as well as a hedge
against potential lost profit. Relatedly, our findings may
have relevance to climate adaptation. Adaptation requires
that agents form beliefs about the extent to which the cli-
mate is changing. This paper suggests that agents, at least
those participating in weather markets, have been updat-
ing their beliefs that summers are getting hotter and win-
ters colder.

There are policy implications of our findings, especially
since some politicians still question the existence and ex-
tent of climate change. The observed annual trend in fu-
tures prices shows that the supposedly efficient financial
markets agree that the climate is warming. To date, cli-
mate models have been very accurate in predicting warm-
ing trends observed across the US. While we cannot be
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sure that the market believes warming to be human in-
duced, per se, anyone doubting climate change can attempt
to profit from that belief by betting against the observed
warming trend. The price of a summer month CDD con-
tract, for example, has increased by roughly $50 over the
20-year sample period. Since the payout of the financial
derivative has a multiplier of 20, this implies an additional
$1,000 in value is on the table per contract. When money
is on the line, it is hard to find parties willing to bet
against the scientific consensus.
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