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Higher country taxes on noxious manufacturing emissions lead to substantial increases in
firms’ R&D spending. The R&D response is entirely driven by those high-pollution firms
most affected by emissions taxes. Pollution taxes increase the marginal value of R&D
spending in polluting firms, even when this spending does not lead to new innovation.
Pollution taxes have the strongest effect on R&D investment in sectors in which new
invention is difficult to appropriate and outside knowledge is easier to acquire, suggesting
an important reason dirty firms invest in R&D is to expand their capacity to absorb external
knowledge and technical know-how. (JEL G31, O13, O33, Q53)
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Policies that encourage firms to shift to cleaner production technologies have
the potential to mitigate climate change risks and other environmental concerns
without significantly slowing long-run economic growth (e.g., Acemoglu et al.
2012). This potentiality has motivated a prominent literature to study how
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environmental policy affects the development of new “clean” products and
technologies (e.g., Aghion et al. 2016). But environmental policy can influence
the path of technical change through another, less studied, mechanism: inducing
polluting firms to make the new technology investments that enable them to
fundamentally transform their production processes.1 Although several studies
highlight the key role technology spending plays in firms’ efforts to re-engineer
production and reduce pollution at the source (e.g., Hammar and Löfgren 2010;
Xie et al. 2015), there is little systematic evidence that environmental policy
can encourage polluting firms to make these investments.

We fill this gap in the literature by studying how country-level taxes on
dirty manufacturing emissions affect technology spending in high-pollution
firms. Our main idea is that emissions taxes make it more expensive for
polluting firms to continuing using their existing production technologies.
The taxes thus incentivize polluting firms to make the investments that allow
them to adopt and implement cleaner production processes. In this sense, the
technology investments that facilitate the transition to cleaner production have
a higher marginal payoff to polluting firms when countries impose taxes on
dirty emissions. The prediction of a tax-induced investment response follows
directly from the theoretical literature on directed technical change: because
of path dependence in technical change, policy action is needed to encourage
dirty firms to invest in new technologies (e.g., Acemoglu et al. 2016).

To test this idea, we estimate how cross-country differences in taxes on sulfur
oxide (SOx) emissions affect firm investment in research and development
(R&D). We focus on SOx taxes because, in addition to SOx being a major air
pollutant, the country-level variation in SOx taxes over time is considerable. In
addition, we have sufficiently disaggregated information on SOx emissions at
the industry level, which we use to sort firms based on how heavily “treated”
they are by higher pollution taxes. We focus on R&D spending because R&D is
the only widely available and internationally comparable measure of technology
investment that we know of. Beyond this practical consideration, extensive
evidence shows that R&D plays a central role in facilitating firm efforts to
overhaul production processes and reduce environmental impact (e.g., Hammar
and Löfgren 2010). In particular, firms invest in R&D as a means to expand
their capacity to use and absorb external knowledge about cleaner production
techniques (e.g., Xie et al. 2015). Thus, R&D spending captures technology
investments that determine both the speed and the path of technical change
(e.g., Aghion and Howitt 1992; Acemoglu et al. 2016).

We merge OECD data on SOx taxes by country and year with information
on firm-level R&D investment from the Compustat Global and North America

1 Studies in the environmental studies field show that dirty firms are able to lessen their environmental impact
primarily through broad, integrated changes to the production process itself. In practice, these changes typically
mean firms adopt production processes that rely on cleaner raw materials and/or use existing inputs more
efficiently. See, for example, the evidence and discussions in Frondel, Horbach, and Rennings (2007) and
Johnstone (2005).
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databases. To measure cross-industry differences in pollution intensity, we use
data from Levinson (2009) on SOx emissions in U.S. manufacturing industries.
We document a strong positive link between taxes on SOx emissions and firm
investment in R&D. The positive association between SOx taxes and R&D
only appears after taxes increase, a test that Bertrand and Mullainathan (2003)
emphasize as crucial for establishing the causal effects of policy changes. In
addition, the effects of higher SOx taxes are concentrated in firms located in
more pollution-intensive industries. These differential effects indicate causality
because firms in pollution-intensive industries are more exposed to (or treated
by) the higher pollution taxes (e.g., Rajan and Zingales 1998). We find similar
differential effects when we study how R&D spending affects the market value
of the company’s equity; these tests show that a marginal dollar of R&D is
more valuable when polluting firms face higher emissions taxes. As far as we
know, this is the first study to show that country-level taxes on dirty emissions
affect the level and value of new technology investment in polluting firms.

To better understand the R&D response we identify in polluting firms, we
explore the “two faces” of R&D spending: firms invest in R&D not only to
develop new products and innovations (the “first face” of R&D) but also to
expand their capacity to understand and assimilate the external knowledge
and technical know-how needed to fundamentally transform the way they
produce (Cohen and Levinthal 1989, 1990).2 Broadly, the first face of R&D
corresponds more closely to studies on the development of clean products and
technologies (e.g., Aghion et al. 2016), whereas the second face of R&D relates
to the literature on re-engineering production and adopting cleaner production
processes (e.g., Hammar and Löfgren 2010; Xie et al. 2015).3

For these tests, we use information from the European Patent Office’s
Worldwide Patent Statistical Database (PATSTAT). PATSTAT contains detailed
bibliographic information on the vast majority of worldwide patents filed since
the 1960s. We evaluate the new invention face of R&D by studying whether
it is associated with more patentable innovative output. We find no relation
between higher pollution taxes and patenting activity in all technology classes;
however, pollution taxes are positively related to new patents in air pollution
abatement technologies. Thus, higher pollution taxes appear to encourage the
development of clean technologies, broadly consistent with the evidence in
prior studies linking environmental policy with new invention (e.g., Lanjouw
and Mody 1996; Popp 2002; Aghion et al. 2016). However, in sharp contrast

2 An important literature emphasizes R&D’s role in facilitating the acquisition of external knowledge and expanding
the firm’s technological absorptive capacity. See, for example, Jaffe (1986), Cohen and Levinthal (1989, 1990),
Geroski, Machin, and Van Reenen (1993), Zahra and George (2002), and Griffith, Redding, and Van Reenen
(2003, 2004).

3 Of course, the two faces of R&D are not mutually exclusive: a given firm can invest in R&D to invent new
technologies and to increase its technological absorptive capacity. As such, distinguishing between the two faces
of R&D, particularly in firms actively engaged in new product innovation, can be challenging to do. Our tests
exploit the idea that the second face of R&D is less likely to show up in patent-based measures of innovative
output and more likely to appear when there is more external knowledge for firms to acquire.
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to R&D, we find no evidence that the high-pollution firms most affected by the
higher emissions taxes drive the increase in clean patenting. Thus, the typical
high-pollution firm responds to pollution taxes by increasing R&D, but not new
invention.4

Why then do polluting firms increase R&D? A plausible answer is that they
invest in R&D to expand their technological absorptive capacity. We know of
no proxy that directly measures output from the “second face” of R&D. We thus
derive a series of cross-sectional tests to evaluate this mechanism. To start, we
sort firms based on two ex ante proxies for the likelihood that any given dollar
of R&D spending represents new product innovation. The R&D response to
higher pollution taxes is concentrated in firms from sectors with low levels of
new product innovation and in sectors in which R&D spending is more focused
on process innovation rather than new product development. At a minimum,
these findings are consistent with the idea that a key reason polluting firms
invest in R&D is to expand absorptive capacity rather than to develop new
patentable innovations.

We construct more direct heterogeneity tests from the model in Cohen and
Levinthal (1989), which makes clear predictions about the conditions under
which it is optimal for firms to invest in R&D for absorptive capacity reasons.
Most importantly, in settings in which new knowledge is difficult to appropriate
and, as such, more readily spills across firms, firms have more incentive to
invest in R&D to expand absorptive capacity but less incentive to invest in
R&D for new invention. This insight suggests that to the extent the R&D
response in polluting firms reflects investment in absorptive capacity rather
than new invention, the R&D response should be relatively stronger among
firms operating in sectors where external knowledge is easier to acquire. On
the other hand, if the R&D response is about new invention, the effects should be
relatively stronger in settings in which new knowledge is easier to appropriate.

We find that polluting firms operating in sectors with low appropriability
(high knowledge spillovers) account for essentially all of the R&D response
we document. Moreover, higher pollution taxes are associated with an increase
in the marginal value of R&D investment in the subsets of firms where R&D
is most closely tied to absorptive capacity rather than new invention. Thus, it
is not the case that polluting firms are simply poor innovators who are unable
to convert the higher R&D into new patentable output.

Our research contributes to the empirical literature on how innovative
activity responds to environmental policies and regulations. Two of the
pioneering studies in this area are Jaffe and Palmer (1997), who find a
positive association between environmental compliance expenditures and

4 Among the small group of high-pollution firms with a prior history of new invention in clean technology, there is a
positive association between emissions taxes and patents related specifically to pollution abatement technologies.
This is a plausible subset of polluting firms in which to find evidence of a “first face” R&D response (e.g., Aghion
et al. 2016).
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R&D in U.S. manufacturing industries, and Lanjouw and Mody (1996), who
document a positive cross-country relation between environmental regulations
and environmental patents. The evidence from this early work is consistent
with the idea that more stringent environmental regulations can encourage
innovation, although the nature of the data and aggregate level of analysis
makes it challenging to draw any definitive conclusions, a point Jaffe and
Palmer (1997) emphasize. Moreover, as Jaffe, Newell, and Stavins (2002)
discuss, market-based environmental policies (such as pollution taxes) may
provide stronger incentives for firms to implement cheaper and more efficient
production technologies compared to the command and control approaches
(such as environmental compliance regulation) that have been studied in prior
work. Our evidence linking SOx taxes with R&D in high-pollution firms is
consistent with this idea.

Our study complements Aghion et al. (2016), who show that higher tax-
inclusive fuel prices lead to clean energy patenting in the auto industry.5

Whereas Aghion et al. (2016) find that price changes affecting the (dirty)
products an industry produces lead to new product innovations in the sector,
we find that higher taxes on dirty production technologies lead to systematic
increases in firm-level R&D, even among the high-pollution firms who are not
actively engaged in new product innovation. These are distinct mechanisms
through which environmental policies can influence the direction of technical
change.

Our findings are also relevant for evaluating and modeling the macro-
economic consequences of environmental policies (e.g., Jaffe, Peterson, and
Stavins 1995; Porter and van der Linde 1995; Calel and Dechezleprêtre 2016).
On the one hand, we show that taxing environmental pollutants can affect
firm-level investment in new technology, which is broadly consistent with a
key theoretical mechanism in the modern literature on endogenous growth
under environmental constraints (e.g., Acemoglu et al. 2012, 2016). But we
also emphasize the distinction between technology investments that stimulate
new invention and those that allow even less innovative firms to expand
their capacity to assimilate new knowledge and re-engineer production. In
particular, just as ignoring R&D’s role in promoting absorptive capacity can
substantially understate the social returns to R&D (e.g., Griffith, Redding,
and Van Reenen 2003, 2004), our results show that some key technology
investments are missed if one only considers how environmental policy
affects the development of (patentable) clean products and pollution abatement
technologies.

More broadly, our work draws attention to the “second face” of R&D
spending and illustrates why it is not always appropriate or desirable to use

5 A related literature shows that higher energy prices induce the development of energy-efficient technologies (e.g.,
Aghion et al. 2016; Hassler, Krusell, and Olovsson 2021; Johnstone, Hascic, and Popp 2010; Newell, Jaffe, and
Stavins 1999; Jaffe and Stavins 1995; Popp 2002).
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R&D and patents as substitute measures of innovative activity. This point is
especially relevant given the ever-expanding literature at the intersection of
finance and innovation, which often uses R&D and patenting interchangeably
(e.g., Hsu, Tian, and Xu 2014; Brown and Martinsson 2019; Atanassov and
Liu 2020). Our work highlights a setting where R&D investments are value
enhancing, even when they do not lead to new patents.

Finally, our work is part of an emerging literature on the linkages between
finance and the environment. One strand of this literature focuses on the impact
of climate change and other environmental issues on firms and financial markets
(e.g., Dimson, Karakaş, and Li 2015; Hong, Li, and Xu 2019; Bansal, Kiku,
and Ochoa 2016; Bernstein, Gustafson, and Lewis 2019; Krueger, Sautner,
and Starks 2020; Bolton and Kacperczyk 2021; Ilhan, Sautner, and Vilkov
2021; Hsu, Li, and Tsou 2021), while a separate strand focuses on the legal,
institutional, and financial determinants of environmentally friendly (or costly)
behaviors (e.g., De Haas and Popov 2019; Levine et al. 2019; Shive and Forster
2020; Akey and Appel 2021; Xu and Kim 2021). Our paper adds to the latter
set of studies by linking environmental taxes with the real investment decisions
that determine the path of technical change.

1. Data, Measurement, and Sample Characteristics

1.1 Sample construction
We build our firm-level sample from the Compustat Global and North America
databases. We focus on non-U.S. firms with fully consolidated financial
statements and a primary industry classification in the manufacturing sector
(SIC 2000–3999).6 To identify a within-firm response to pollution taxes we
need a sample of firms that at least semiregularly reports R&D spending, so
we exclude firms with fewer than three nonmissing R&D observations over the
period 1990 to 2012. Our findings are similar if we set all missing R&D values
to zero. We require countries to have at least 10 firms with usable R&D data
because we need within-country, across-industry coverage of R&D spending
for the empirical tests.

We merge the firm-level data from Compustat with information on air
pollution taxes for 18 OECD countries. We collect information on the level of
taxes and charges directly applied to the emission of sulfur oxides (SOx) by the
manufacturing sector from two OECD sources: the Environmental Stringency
Index data set, and the Policy Instruments for the Environment (PINE) Database
(see Botta and Kozluk 2014). The OECD data provides a categorical “score”

6 We focus on firms outside of the United States for two primary reasons. First, we use information from U.S.
firms to measure cross-industry differences in pollution intensity (e.g., Rajan and Zingales 1998). Second, as
Shapiro and Walker (2018) discuss, the United States does not have a national pollution tax. The United States
levies various taxes and enforces regulations on pollution at the local or regional level; however, neither would
broadly apply to all (or most) publicly listed manufacturing firms.
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for each country-year based on the presence and extent of SOx emissions
taxes. The resultant pollution tax variable (Pollution taxes) ranges from 0 to 6,
with 0 indicating no pollution tax and larger values indicating higher taxes on
SOx emissions. By construction, the categorical scores are comparable across
countries and over time.

A potential concern with the OECD data is whether the tax applies to a
sufficiently large fraction of manufacturing firms in the country. We thus check
the underlying data in the PINE database to ensure that the taxes on SOx

emissions are either levied at the national level (as in Denmark, France, Italy,
and Korea) or affect a significant portion of the country (as in Australia, Canada,
Spain, and Japan). If the tax only affects a small fraction of the country (which
would be the case in the United States), we assume the national tax level is
zero.

We also match the Compustat firms from countries with pollution tax
data with patenting metrics from the Worldwide Patent Statistical Database
(PATSTAT). PATSTAT is a comprehensive database on global patenting activity
maintained by the European Patent Office (EPO). This database has over
100 million patent documents, covering essentially the universe of worldwide
patents since the 1960s. Our matching process, which we describe in detail in
Appendix B, follows the approach that Hall, Jaffe, and Trajtenberg (2001) use to
map patents filed at the United States Patent and Trademark Office to U.S. firms
in the Compustat North America database (also see Bena et al. 2017). Briefly, we
search the PATSTAT database for matches to the company names in Compustat,
then work with unique company identifiers in PATSTAT to find firm-specific
information on patent counts and citations. Following Aghion et al. (2016), we
focus on new triadic patents, which are patents simultaneously registered at the
European, Japanese, and U.S. patent offices for the same invention by the same
applicant. To measure the number of new triadic patents a given firm generates
in a given year, we use the application date on ultimately granted patents. Our
findings are similar if we use future citations to all patents a firm generates
in a given year or citation-adjusted patent counts (e.g., Trajtenberg 1990) as
alternative ways to measure new invention.

After merging data from these various sources, we work with a primary
sample of around 33,500 firm-years across 18 countries over the period 1990 to
2012. Table A1 reports observation counts across the countries in the sample.
Japan accounts for the most observations (by far), followed by the United
Kingdom and Canada. As we will discuss below, all of our main findings are
robust to excluding the most influential countries.

Finally, for some tests we incorporate daily market price data from the
Compustat Global Security Daily file. We describe the Security Daily file and
the matching process with our main sample in Appendix C. Table 1 defines all
the variables we use in the study, and Table 2 reports the sample’s summary
statistics (in constant US$(2000)). Table A2 contains a correlation matrix for
the main firm-level variables we use in the study.
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Table 1
Description of variables

Variable name Definition Source

R&Di,t The natural logarithm of firm-level research and
development (R&D) expenditures (deflated to
US$(2000) millions and winsorized at the 1%
level)

Compustat Global and
North America

Salesi,t The natural logarithm of firm level sales (deflated
to US$(2000) millions and winsorized at the
1% level)

Compustat Global and
North America

Cash-flow-to-assetsi,t Cash flow divided by the beginning of year book
value of total assets (winsorized at the 1% level)

Compustat Global and
North America

Sales growthi,t First difference in Sales (winsorized at the 1%
level)

Compustat Global and
North America

Cash holdings-to-assetsi,t Cash holdings divided by the beginning of year
book value of total assets (winsorized at the 1%
level)

Compustat Global and
North America

Total debt-to-assetsi,t Total debt divided by the book value of total
assets (winsorized at the 1% level)

Compustat Global and
North America

IFRSi,t An indicator variable taking on the value one if
the firm reports using International Financial
Reporting Standards (IFRS) in a given year,
zero otherwise

Compustat Global and
North America

Patent counti,t The natural logarithm of one plus the firm level
count of triadic patents that are eventually
granted; dated by application date (winsorized
at the 1% level)

Worldwide
Patent Statistical Database
(PATSTAT)

Patent citationsi,t The natural logarithm of one plus the count of
future citations to patents that are eventually
granted; dated by application date on the
granted patent (winsorized at the 1% level)

Worldwide
Patent Statistical Database
(PATSTAT)

�MV i,t /MV i,t−1 The percentage change in the market value of
equity for firm i between year t and t −1
(winsorized at the 1% level)

Compustat Global and
North America, Security
Daily File

R&Di,t /MV i,t−1 The ratio of R&D expenditures to the lagged
market value of equity (winsorized at the 1%
level)

Compustat Global and
North America, Security
Daily File

Pollution taxesc,t Taxes and charges directly applied to the
pollution of sulfur oxides (SOx ). It is based on
tax rate in Euros per tonne pollution by country
and year. Categorized between 0 to 6,
indicating low to high taxation levels

Environmental Stringency
Index, PINE Databases
(OECD)

Pollution tax changec,t Indicator variable equal to zero in the years before
an increase in Pollution taxes, and one
thereafter. If there are two changes in Pollution
taxes, Pollution tax change starts at zero,
increases to one after the first change in
pollution taxes, and increases to two after the
second change

Authors’ calculations based
on Pollution taxesc,t

SOxemissionj Pounds of sulfur oxides (SOx) per unit of output
in each three-digit SIC industry in the U.S.
manufacturing sector in 1987

Levinson 2009

1.2 Pollution taxes
Figure 1 shows how country-level pollution tax values change over time. There
is considerable cross- and within-country variation in Pollution taxes. Eight
countries tax SOx emissions, and seven of them introduced the tax during the
sample period. Denmark and Korea experienced the largest changes during the
time period, both reaching the highest value for Pollution taxes. Australia and
Canada introduced a relatively low SOx emissions tax. Spain makes multiple
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Table 2
Summary statistics

Obs. Mean Median SD

R&Di,t 33,545 1.038 0.325 1.428
Salesi,t 33,545 2.778 2.297 2.718
Cash-flow-to-assetsi,t 33,343 0.076 0.084 0.154
Sales growthi,t 33,343 0.042 0.035 0.306
Cash-holdings-to-assetsi,t 33,343 0.209 0.132 0.289
Total debt-to-assetsi,t 33,343 0.218 0.189 0.190
IFRSi,t 33,343 0.196 0.000 0.397
Patent counti,t 33,545 0.442 0.000 0.948
Patent citationsi,t 33,545 2.788 2.639 2.520
�MV i,t/MV i,t −1 30,153 0.155 0.011 0.696
R&Di,t/MV i,t −1 30,153 0.029 0.001 0.069
Pollution taxesc,t 414 0.959 0.000 1.898
Pollution tax changec,t 414 0.478 0.000 0.738
SOxemissionj 107 9.216 1.086 21.603

This table reports the summary statistics for the key variables included in this study. The firm-level data are from
Compustat Global and North America and consist of R&D reporting firms with at least three nonmissing R&D
observations during 1990–2012 and a primary SIC industry classification between 2000 and 3999. We convert
all dollar values to constant US$(2000) using the local currency unit conversion reported in Compustat Global
and the annual U.S. GDP deflator from World Bank Development Indicators. Table 1 defines the variables in
detail.

changes over the sample period, and Japan has the highest value in Pollution
taxes during the entire sample period. The 10 other countries in our sample
have zero Pollution taxes throughout the sample’s time period.

1.3 Pollution intensity
Our identification strategy focuses on the differential impact of higher pollution
taxes in industries with a higher propensity to emit SOx . To sort industries by
how pollution intensive their production technologies are, we use information
from Levinson (2009) on pounds of SOx emissions per unit of output (SOx

emissions) in each three-digit SIC industry in the United States in 1987. Eight
three-digit SIC industries have no SOx emissions; we exclude these industries,
although including them does not affect our findings. The intersection of
the firm-level data on R&D and patenting and the industry-level information
on pollution intensity leaves us with firms in 107 distinct three-digit SIC
manufacturing industries.

Panels A and B of Table 3 list the 10 most- and least-polluting industries (with
at least 50 observations) in our sample. Hydraulic cement manufacturing (SIC
324) is by far the industry with the highest pollution intensity. The 10 most-
polluting industries emit on average (median) 66.701 (52.898) pounds of SOx

per unit of output compared to 0.067 (0.086) for the 10 least-polluting industries.
Table 2 shows that average (median) SOx emissions across all industries is 9.216
(1.086). Thus, the average (median) level of SOx pollution is more than 6 (50)
times higher in the 10 most-polluting industries relative to the sample as a
whole.

An important benefit of the pollution data from Levinson (2009) is the level
of disaggregation. Eight of the top-10 most pollution-intensive industries are
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Figure 1
Taxes on SOx emissions, 1990 to 2012
This figure reports the evolution of taxation on sulphur oxides (SOx ) by country and over time. Our sample
also includes 10 countries with no SOx tax: Austria, Belgium, Finland, Germany, Greece, Ireland, Netherlands,
Norway, Sweden, and the United Kingdom. Source: OECD.

in three two-digit SIC codes: 28, 32, and 33. Yet, these same broad two-
digit categories also contain some of the least pollution-intensive industries.
For instance, whereas the cement and concrete industries (SIC 324 and 327)
are among the highest SOx-emitting industries, Flat glass (SIC 321), Glass
Products, Made of Purchased Glass (SIC 323), and Cut Stone and Stone
Products (SIC 328) are all relatively low polluters (approximately 2 pounds
of SOx per unit of output). SOx emissions in the Cement industry are around
70 times greater than emissions in these three industries, even though they are
in the same two-digit industry group.

We use pollution intensities from U.S. industries because they are, to the
best of our knowledge, the only sufficiently disaggregated and comprehensive
measures of cross-industry differences in the emission of major air pollutants.
Another benefit of the pollution intensity data is that it is measured before our
sample period begins in a country not included in the sample (e.g., Rajan and
Zingales 1998). However, it is important to note that our identification does not
hinge on industry pollution levels being the same across all countries. Rather,
the assumption is merely that the relative ordering of pollution intensity is
similar across countries, for example, that an industry like Cement is generally
more pollution intensive (and thereby more heavily treated by pollution taxes)
than an industry like Glass Products. In addition, we focus on differences across
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Table 3
Pollution intensity and R&D investment in selected industries

SIC Industry SOx emissions R&D # obs.

A. Top-10 most-polluting industries

324 Cement, hydraulic 140.330 1.097 92
299 Misc. products of petroleum and coal 119.471 1.343 68
281 Industrial inorganic chemicals 82.974 0.715 467
327 Concrete, gypsum, and plaster products 71.692 0.504 296
331 Steel works, blast furnaces, mills 53.392 0.681 828
333 Primary smelting and refining 52.404 0.904 242
329 Abrasive, asbestos, and misc. 42.567 0.742 289
204 Grain mill products 36.625 0.439 223
287 Agricultural chemicals 34.352 0.754 287
286 Industrial organic chemicals 32.929 0.633 316

Mean 10 most polluting 66.701 0.781 311
Median 10 most polluting 52.898 0.729 288

B. Ten least-polluting industries

382 Laboratory apparatus and instruments 0.141 0.926 1,309
275 Commercial printing 0.112 0.911 186
341 Metal cans and shipping containers 0.112 1.277 85
355 Special industry machinery, ex. metal 0.090 0.891 1,370
384 Photographic, medical, and optical goods 0.087 1.102 1,394
357 Computer and office equipment 0.085 1.054 1,016
205 Bakery products 0.024 0.143 111
394 Dolls, toys, games, and sporting 0.009 0.753 395
365 Household audio and video equipment 0.006 1.257 320
345 Screw machine products, bolts, nuts, etc. 0.001 0.248 132

Mean 10 least polluting 0.067 0.856 632
Median 10 least polluting 0.086 0.918 358

This table lists the 10 most (panel A) and 10 least (panel B) polluting industries (with more than 50 observations).
SOx emissions measures the total amount of pollution (in pounds) of sulfur oxides (SOx) per unit of output in
the United States based on data from Levinson (2009). R&D is the average R&D by industry. Table 1 defines the
variables in detail.

bins of pollution-intensity (quartiles or medians), which is even less likely to
substantially differ across countries. Consistent with this idea, the evidence
in Hettige, Lucas, and Wheeler (1992) suggests that cross-sector differences
in pollution emissions are very stable across countries and over time. We
show in Appendix D that the cross-industry differences in pollution intensity
documented using U.S. data are broadly consistent with the patterns in Italy,
the Netherlands, and Denmark, three other developed countries for which we
have relatively detailed information on industry SOx emissions.

2. Pollution Taxes and R&D Investment

2.1 Baseline specification
To evaluate the effects of pollution taxes we follow Jaffe and Palmer (1997)
and model R&D as a function of output (sales), starting with the following
specification:

R&Di,t =βPollution taxesc,t−1 +γ Salesi,t +ηi +ηt +εi,t . (1)

In Equation (1), R&Di,t is the natural logarithm of R&D investment, and Sales
is the natural logarithm of net sales, in firm i, in year t . The key explanatory

4528

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/35/10/4518/6510950 by M

athem
atical Statistics user on 19 M

arch 2025



[12:57 3/9/2022 RFS-OP-REVF220003.tex] Page: 4529 4518–4560

Emissions Taxes and R&D Investment in Polluting Firms

Table 4
Pollution taxes and R&D investment

(1) (2) (3) (4) (5) (6)

Pollution taxesc,t−1 0.062 0.055
(0.020)∗∗∗ (0.018)∗∗∗

Salesi,t 0.312 0.353 0.311 0.352 0.311 0.352
(0.036)∗∗∗ (0.038)∗∗∗ (0.035)∗∗∗ (0.037)∗∗∗ (0.035)∗∗∗ (0.037)∗∗∗

Pollution tax changec,t 0.149 0.133
(0.053)∗∗ (0.052)∗∗

Pollution tax change(−1) 0.006 −0.007
(0.011) (0.012)

Pollution tax change(0) 0.038 0.036
(0.025) (0.026)

Pollution tax change(≥1) 0.156 0.136
(0.056)∗∗ (0.053)∗∗

Firm fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Firm control set No Yes No Yes No Yes
Observations 33,545 33,343 33,545 33,343 33,545 33,343
Adjusted R2 .954 .957 .955 .957 .955 .957

This table reports the OLS estimates for Equation (1). R&Di,t is the dependent variable. The firm-level data
are from Compustat Global and North America and consist of non-U.S. firms with at least three nonmissing
R&D observations during 1990–2012 and a primary SIC industry classification between 2000 and 3999. All
regressions include firm and year fixed effects. Columns 2, 4, and 6 also include the following firm-level control
variables: Cash-flow-to-assets, Sales growth, Cash-holdings-to-assets, Total debt-to-assets, and IFRS. Table 1
defines the variables in detail. Standard errors are clustered at the country level. *p<.1; **p<.05; ***p<.01.

variable is Pollution taxesc,t−1, which is the level of SOx taxation in country c

at the beginning of year t . The specification includes both firm and year fixed
effects (ηi and ηt ). Firm fixed effects account for any unobserved, time-invariant
firm characteristics that may affect R&D, including any stable characteristics of
the country in which the firm operates, such as culture, institutional quality, and
accounting conventions. Year fixed effects control for aggregate time-varying
shocks common to all firms in all countries. We cluster standard errors at the
country level.7

We also estimate augmented versions of Equation (1), where we focus on
differences in the response to Pollution taxesc,t−1 across firms with differing
exposures to the tax. To implement these tests, we sort firms into quartiles
based on SOx emissions intensity in the firm’s three-digit SIC industry. We then
interact this pollution intensity indicator variable (Qk of SOx polluters) with
the time-varying measure of country Pollution taxes. If Pollution taxes have
a causal impact on firm investment in R&D, the effects should be relatively
stronger in firms who are more heavily exposed to the tax.

2.2 Baseline results
Columns 1 and 2 in Table 4 report the estimates for Equation (1). The ordinary
least squares (OLS) estimate of β reported in column 1 is positive and highly

7 All of our inferences for statistical significance are similar if we replace the country clustering with bootstrapped
standard errors (with 50, 100, 200, 400, 1,000, and 2,000 repetitions). These results are available on request.
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statistically significant, showing that increases in country-level pollution taxes
are associated with more firm-level investment in R&D. The estimate (0.062)
indicates that a one standard deviation increase in Pollution taxes is, on average,
associated with an increase in R&D of around 0.12, or approximately 11%, of
the sample average R&D. Column 2 shows that the estimate on the Pollution
taxes term is almost identical if we control for a standard set of time-varying
firm-level characteristics (Cash-flow-to-assets, Sales growth, Cash-holdings-
to-assets, and Total debt-to-assets, as well as an indicator variable for whether
the firm-year reporting follows the International Financial Reporting Standards
(IFRS)).8

In columns 3–6, we explore whether the estimated effects of pollution taxes
show up before the tax is introduced (or increased). We start by constructing
the variable Pollution tax change, which equals zero in the years before an
increase in pollution taxes, and one thereafter. For a country with no changes
in pollution taxes, the Pollution tax change variable is always equal to zero.
For countries with two changes in pollution taxes, Pollution tax change starts
at zero, increases to one after the first increase in pollution taxes, and increases
to two after the second increase.9 The results in columns 3 and 4 show that
Pollution tax change is positively and significantly related to firm investment
in R&D. The coefficient estimate indicates that, on average, the introduction of
a new (higher) pollution tax is associated with an increase in R&D of around
0.13–0.15, or 13%–14%, of the sample average level of R&D spending.

Clearly, if the relationship between pollution taxes and R&D is causal, R&D
should not respond until after pollution taxes increase. We thus decompose
the Pollution tax change variable into three separate periods: Pollution tax
change(−1), which equals the forward value of Pollution tax change in the year
before a pollution tax increase, and zero otherwise; Pollution tax change(0),
which equals Pollution tax change in the year of the pollution tax change, and
zero otherwise; and Pollution tax change(≥1), which equals the lagged value
of Pollution tax change in all years after a pollution tax increase, and zero
otherwise. Notably, whether or not we include the firm-level control variables,
the coefficient estimate on Pollution tax change(−1) is near zero and statistically
insignificant, showing that R&D is not already trending higher prior to an
increase in pollution taxes. The coefficient estimate on Pollution tax change(0)

is positive and larger in magnitude, but not statistically significant. In sharp

8 Compustat data item “ACCTSTD” equals “DI” if the firm’s financial statements follow IFRS. We control for
IFRS adoption to address potential concerns that our findings are biased by cross-country differences in the
accounting treatment of R&D. Given that we control for firm fixed effects and primarily focus on within-country,
across-industry differences, potential differences in R&D comparability across countries should be a concern
only to the extent that some subsets of firms in a given country change how they report R&D in a way that is
correlated with changes in pollution taxes. The most important accounting change during our sample period is
the adoption of IFRS.

9 We ignore any changes in pollution taxes that are reversed within three years, as occurs in Korea in 2008 and
2011 and Spain in 2004. Broadly, our construction of the Pollution tax change variable follows the approach
used by Acharya and Subramanian (2009) to study how changes in creditor rights affect innovation.
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Table 5
Pollution taxes and R&D investment: Differential effects in high-pollution industries

(1) (2) (3) (4) (5)

Pollution taxesc,t−1 0.000 −0.006
(0.013) (0.011)

Salesi,t 0.311 0.352 0.259 0.304 0.297
(0.035)∗∗∗ (0.038)∗∗∗ (0.032)∗∗∗ (0.036)∗∗∗ (0.034)∗∗∗

Pollution taxesc,t−1x 0.050 0.042 0.042 0.033 0.012
Q2 of SOx polluters (0.016)∗∗∗ (0.014)∗∗∗ (0.016)∗∗ (0.017)∗ (0.036)
Pollution taxesc,t−1x 0.087 0.089 0.083 0.086 0.103
Q3 of SOx polluters (0.042)∗ (0.039)∗∗ (0.022)∗∗∗ (0.022)∗∗∗ (0.033)∗∗∗
Pollution taxesc,t−1x 0.097 0.097 0.103 0.103 0.092
Q4 of SOx polluters (0.014)∗∗∗ (0.011)∗∗∗ (0.015)∗∗∗ (0.013)∗∗∗ (0.023)∗∗∗

Firm fixed effects Yes Yes Yes Yes Yes
Year fixed effects Yes Yes No No No
Firm control set No Yes No Yes Yes
Country-year fixed effects No No Yes Yes Yes
Industry-year fixed effects No No No No Yes
Observations 33,545 33,343 33,529 33,327 33,003
Adjusted R2 .955 .957 .959 .961 .961

This table reports the OLS estimates for Equation (1) augmented with interactions between country Pollution
taxes and indicators for the industry pollution intensity quartiles. R&Di,t is the dependent variable. The firm-level
data are from Compustat Global and North America and consist of non-U.S. firms with at least three nonmissing
R&D observations during 1990–2012 and a primary SIC industry classification between 2000 and 3999. All
regressions include firm fixed effects; columns 1 and 2 (3–5) include year (country-year) fixed effects; and
column 5 includes industry-year fixed effects. Qk of SOx polluters is an indicator variable taking on the value
one if the firm is located in the kth quartile in SOx emission. Columns 2, 4, and 5 include the following firm-level
control variables: Cash-flow-to-assets, Sales growth, Cash-holdings-to-assets, Total debt-to-assets, and IFRS.
Table 1 defines the variables in detail. Standard errors are clustered at the country level. *p<.1; **p<.05;
***p<.01.

contrast, the coefficient for Pollution tax change(≥1) is large in magnitude
and statistically significant, showing that the effects of higher pollution taxes
are entirely concentrated in the years after the taxes increase. Using the most
conservative point estimate, the results suggest that, on average, a given firm’s
R&D spending is around 0.13 higher (12.5% of the sample average R&D) in
the years following a pollution tax increase compared to the R&D level two
years before the increase. This evidence addresses the potential concern that
policy makers only impose higher taxes on dirty production technologies after
firms have already started to increase new technology spending.

2.3 Differential effects
Table 5 reports the estimates for Equation (1) augmented with interactions
between country Pollution taxes and the indicators for the industry pollution
intensity quartiles. The first two columns report results with aggregate year
dummies (as in Equation (1)). One advantage of starting with this specification
is that we can include the uninteracted Pollution taxes variable, which directly
shows the relation between pollution taxes and R&D in the least pollution-
intensive industries. Another advantage is showing that the inclusion of more
refined sets of fixed effects has very little impact on the coefficient estimates.

In column 1 of Table 5, the coefficient estimate on the uninteracted Pollution
taxes term is zero, while the coefficients for the interaction terms are positive
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and statistically significant. That is, while low-pollution firms do not increase
R&D in response to higher Pollution taxes, the higher pollution firms with more
exposure to the tax significantly increase R&D. Moreover, the magnitude of
the R&D response is largest among firms in the top two quartiles of pollution
intensity, as expected if the effects are causal rather than spurious. Column 2
shows that including the additional firm control variables has little impact on
the coefficient estimates.

In the remainder of Table 5, we include country-year fixed effects, which
absorb the uninteracted Pollution taxes term and broadly account for any time
varying country-level factors that affect innovative activity across all firms
(such as changes in a given country’s economic opportunities or R&D incentive
policies). Columns 3 and 4 show that we draw similar inferences with the
country-year fixed effects, and, again, including the set of firm control variables
does not materially affect the coefficient estimates. In the final column, we also
include a full set of industry-year fixed effects, which flexibly controls for any
time-varying industry shocks that may affect R&D activity. Consistent with
the other specifications, Pollution taxes shares a differentially stronger positive
relation with R&D in industries with a higher ex ante pollution intensity.

The results in Table 5 consistently show that the coefficients for the Pollution
taxes x Qk of SOx polluters interactions are positive and statistically significant
for the two most pollution-intensive quartiles. These coefficients are around
0.08–0.10, indicating that, for every one standard deviation increase in Pollution
taxes, firms located in industries with above-median pollution intensity increase
R&D by approximately 0.15–0.19 more than firms in industries with the lowest
pollution intensity. This differential effect is around 14%–18% of the sample
average level of R&D.10

One potential concern with the results in Table 5 is that a country’s pollution
tax level is correlated with some other time-varying country characteristic,
and that it is actually this alternative characteristic that drives the positive
(differential) association between pollution taxes and R&D. For such a
characteristic to explain our findings, it must be positively correlated with
pollution taxes and disproportionately important for R&D in higher pollution
industries. We consider three characteristics that could potentially satisfy
both conditions: (a) the level of economic development, measured by gross
domestic product (GDP) per capita (Development), (b) the level of public
funding for environmental innovation, measured by public sector spending on
environmental R&D (Env. R&D), and (c) the user cost of R&D (User cost),
which captures any changes in a country’s R&D tax credits.11 We interact

10 We find similar-sized differential effects if we focus on R&D-to-assets rather than R&D. Specifically, in the
baseline difference-in-difference regression, a one-standard-deviation increase in Pollution taxes is associated
with a differential increase in R&D-to-assets in the highest quartile of polluters of approximately 15% of the
sample average R&D-to-assets ratio.

11 Table A3 shows that these three country characteristics are unrelated to pollution taxes. The correlation between
Pollution taxes and Development, Env. R&D, and User cost is −0.303, −0.008, and 0.123, respectively. We collect
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Figure 2
Robustness of the estimated relation between pollution taxes and R&D to alternative country-level
mechanisms
This figure summarizes how adding a series of alternative country-level control variables to the augmented
version of Equation (1) affects the coefficient for Pollution taxes x Q4 of SOx polluters with R&D as dependent
variable. The additional country-level variables are GDP per capita (Development), public environmental R&D
to GDP (Env. R&D), and the user cost of R&D (User cost). The additional country-level variables are interacted
with Qk of SOx polluters and added to the regression alongside the firm and country-year fixed effects. Table 1
defines the variables in detail. Standard errors are clustered at the country level. The columns in the figure indicate
the coefficient estimate on Pollution taxes x Q4 of SOx polluters, while the bands represent 95% confidence
intervals.

each of these time-varying country characteristics with the industry pollution
intensity indicators (Qk of SOx polluters) and include the interactions in the
augmented version of Equation (1). Figure 2 summarizes how the coefficient
for the interaction between Pollution taxes and Q4 of SOx polluters changes
when these additional interactions are also included in the regression. The
results show that regardless of whether we include the additional interactions
separately or all together in the same regression, the coefficient for the Pollution
taxes x Q4 of SOx polluters is similar in sign and significance to the estimates
in Table 5.

2.4 Alternative approaches and robustness checks
The positive association between pollution taxes and R&D is robust to
numerous sampling and modeling choices. We compile some of the most
important robustness checks in Tables A4–A6 in the appendix.

the variables Development and Env. R&D from the OECD’s data portal, and we build the User cost variable from
Thomson (2009).
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2.4.1 Sample composition. Table A4 shows that our findings are not driven
only by a particular country or set of countries. Panel A of Table A4 reports the
estimates for the baseline regression (Equation (1)), while panel B reports the
estimates for the difference-in-differences specification. Columns 1–4 show
that excluding the three countries with the most observations in our sample
(Canada, Japan, and the United Kingdom) has little effect on the coefficient
estimates and none on our inferences, whether we drop the countries one by
one or exclude all of them simultaneously.

Perhaps most notably, despite the sharp decline in sample size (from 33,545 to
9,114 observations) that occurs when we drop all three of the largest countries,
we continue to find a positive and significant differential effect of higher
pollution taxes on R&D in the most pollution-intensive industries. Column
5 shows that we also find similar results if we drop the countries without any
variation in SOx emissions taxes.

2.4.2 Omitted shocks. The pollution tax changes are staggered across
countries, but several of the changes occur in the 1997–2001 period, a time
of strong global economic activity. A potential concern is that this strong
economic period had a particularly important impact on R&D in high-pollution
firms, thereby generating a spurious (differential) association between pollution
taxes and firm R&D. We address this possibility in columns 1 and 2 in
Table A5 by including interactions between the industry pollution intensity
indicators and a dummy variable taking on the value one in 1997–2001, the
years where pollution tax increases are most common in our sample. The
results in column 1 reveal no systematic relation between the 1997–2001
time period and R&D investment in more pollution-intensive industries; that
is, regardless of the pollution tax level, more pollution-intensive industries
were not disproportionately increasing R&D from 1997 to 2001. The results
in column 2 show that the differential association between pollution taxes
and R&D in high-pollution industries is robust to including the additional
interaction terms.

Columns 3–6 in Table A5 present results addressing the potential concern that
cross-country and firm-level differences in the accounting treatment of R&D
biases our inferences. In particular, the introduction of IFRS during our sample
period changes how R&D is accounted for in many of our sampled countries
(e.g., Healy, Myers, and Howe 2002; Soderstrom and Sun 2007; Daske et al.
2013). This change could affect our inferences if IFRS adoption was correlated
with increases in pollution taxes and had a differential effect on the way firms
in more pollution-intensive industries report R&D.

We have already shown that the results are robust to controlling for firm-
specific adoption of IFRS, but to rule out the possibility that country adoption is
correlated with pollution taxes and R&D in a way that would bias our inferences,
we create an indicator variable taking on the value of one in the year a country
adopts IFRS, and zero otherwise. We then interact this dummy variable with the
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pollution intensity quartile indicator variables. The results in column 3 show
that IFRS adoption did not have any differential effects on the level of reported
R&D across industries with different pollution intensity. The results in column
4 show that adding the IFRS interactions has no effect on our main inferences
on the association between pollution taxes and R&D.12 Finally, in columns 5
and 6 we test whether IFRS adoption at the firm level intersects with country
pollution taxes in a way that might affect our inferences. For these tests we
build an indicator variable, Not IFRS, which equals one in firm-years that do
not follow IFRS standards, and zero otherwise. The estimate on the interaction
between Not IFRS and Pollution taxes is small and statistically insignificant,
further indicating that IFRS adoption does not materially affect the relation
between pollution taxes and R&D.

2.4.3 Industry growth opportunities. In Table A6, we address potential
concerns about time-series changes in industry growth opportunities by
controlling for time-series changes in the industry’s share of total R&D and total
employment in the country. Perhaps countries systematically introduce higher
pollution taxes at precisely the time that the high-pollution industries located
in the country encounter more innovation opportunities or growth prospects.
The evidence in Table A6 shows that although each of these industry share
measures relate positively to R&D (and significantly so in the case of industry
share of employment), adding them as controls has little effect on our estimates,
particularly our finding of a relatively stronger association between pollution
taxes and R&D in the most pollution-intensive industries.

3. Pollution Taxes and New Invention

The most widely studied reason firms invest in R&D is to generate new products
and technologies. To the extent the R&D response in high-pollution firms is
focused on new invention, we should also observe an increase in the number of
new patents that these firms generate. We explore this potentiality in Table 6,
which estimates the relation between country pollution taxes and firm-specific
counts of new triadic patents (Patent count). Table A7 shows that all of our
inferences are similar if we use future citations to all new patents a firm produces
in a given year as an alternative way to measure new invention. The patent
regressions mirror those we estimate for R&D, although in some specifications

12 Beyond establishing that IFRS adoption does not bias our inferences on the relation between pollution taxes
and R&D, these results also address more general concerns about bias from cross-country differences in the
accounting treatment of R&D. Namely, these results show that a major accounting reform does not affect R&D
across firms in different pollution intensity quartiles. If cross-country differences in the accounting treatment of
R&D were an important factor behind our results, we would expect to see some movement in R&D when those
accounting rules were standardized by IFRS.
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Table 6
Pollution taxes and new invention

(1) (2) (3) (4) (5) (6)

All technology Air pollution
classes abatement technologies

Pollution taxesc,t−1 −0.028 −0.008 −0.007 0.076 0.090 0.087
(0.031) (0.017) (0.012) (0.024)∗∗∗ (0.031)∗∗∗ (0.028)∗∗∗

Stock of triadic 0.437 0.437 0.311 0.311
patentsi,t−1 (0.018)∗∗∗ (0.018)∗∗∗ (0.057)∗∗∗ (0.057)∗∗∗
Pollution taxesc,t−1x 0.002 −0.016
Q2 of SOx polluters (0.018) (0.018)
Pollution taxesc,t−1x 0.025 0.003
Q3 of SOx polluters (0.022) (0.040)
Pollution taxesc,t−1x −0.016 0.010
Q4 of SOx polluters (0.011) (0.014)

Firm fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Observations 33,442 33,442 33,442 33,442 33,442 33,442
Adjusted R2 .802 .846 .846 .198 .198 .198

This table reports the OLS estimates for Equation (1) (columns 1–2 and 4–5), and Equation (1) augmented
with interactions between country Pollution taxes and the indicators for the industry pollution intensity quartiles
(columns 3 and 6). Patent counti,t is the dependent variable. The firm-level data are from Compustat Global and
North America and consist of non-U.S. firms with at least three nonmissing R&D observations during 1990–2012
and a primary SIC industry classification between 2000 and 3999. Patents from technology classes classified
as air pollution abatement technologies (based on Hascic and Migotto 2015; reported in Table B1) are reported
in columns 4–6. Qk of SOx polluters is an indicator variable taking on the value one if the firm is located in
the kth quartile in SOx emission. All regressions include firm and year fixed effects, Sales and the following
country-level control variables: Public environmental R&D to GDP and GDP per capita. Table 1 defines the
variables in detail. Standard errors are clustered at the country level. *p<.1; **p<.05; ***p<.01.

we also control for a given firm’s prior innovative activity by including a time-
varying measure of their stock of patents (Stock of patentsi,t−1).13 This approach
follows that of Aghion et al. (2016), who show that prior innovative activity is
a strong predictor of current patenting outcomes.

In the first three columns of Table 6, the dependent variable Patent count
includes new triadic patents from all technology classes. The estimate in column
1 shows no systematic relation between pollution taxes and overall rates of firm
patenting activity. Column 2 shows that, as expected, the Stock of patentsi,t−1

is positively associated with Patent count, but controlling for prior patenting
does not affect the (non)relation between Pollution taxes and new patents. The
difference-in-differences estimates in column 3 show that the high-pollution
firms who substantially increase R&D spending in response to higher emission
taxes do not also (disproportionately) increase patenting.

The last three columns in Table 6 specifically focus on the relation between
pollution taxes and new patents for pollution emission abatement technologies.
To identify these particular technologies, we follow the OECD’s ENV-TECH
classifications (see Hascic and Migotto 2015). As Table B1 shows, these clean
air inventions focus on purifying and removing noxious gases and chemicals

13 To construct a patent stock for each firm, we begin in the year 1985 (the starting year of the matched patent
data), apply the perpetual inventory method, and assume a deprecation rate of 20%. This approach follows the
literature on the depreciation rate of R&D capital and is the rate used in Aghion et al. (2016).
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from waste emissions. The baseline estimate in column 4 shows that, across all
firms, pollution taxes are positively associated with the development of new air
pollution abatement technologies. In column 5, we control for a firm’s existing
stock of patents. These estimates show that a firm’s prior innovative activity
is positively associated with new patents in air pollution abatement products;
we continue to find a positive association between pollution taxes and new air
pollution abatement patents after controlling for the firm’s patent stock. These
results are consistent with the positive link between environmental policy and
new invention documented in prior studies (e.g., Lanjouw and Mody 1996;
Aghion et al. 2016).

In column 6 of Table 6, we include the interactions between Pollution taxes
and the pollution intensity quartiles. The coefficients for the interaction terms
are around zero and statistically insignificant, showing no differential relation
between pollution taxes and pollution abatement patents in high-pollution
firms.14

4. Pollution Taxes and the Marginal Value of R&D Investment

Our primary interest is the connection between pollution taxes and real
investment in new technology. But a supplemental test for the plausibility and
economic importance of this connection is evidence that the pollution taxes
affect how the market values R&D spending in high-pollution firms. This test
is particularly important given the evidence above that high-pollution firms
increase R&D, but not new invention; perhaps these firms are just not good
innovators.

To explore the value implications of R&D investment, we estimate the
following specification:

�MV i,t/MV i,t−1 =α1R&Di,t/MV i,t−1 +α2(Pollution taxesc,t ×R&Di,t/MV i,t−1)

+Xi,t +ηi +ηc,t +εi,t . (2)

In Equation (2), the dependent variable is the percentage change in the market
value of equity for firm i between year t and t −1.15 R&Di,t /MVi,t−1 is firm
i’s R&D spending in year t scaled by the market value of the firm’s equity
in year t −1. With this standardization, α1 captures the incremental value of
an additional dollar of R&D on the market value of the company’s equity
(e.g., Faulkender and Wang 2006). To explore how the country pollution tax
level affects this value, we include the interaction between R&Di,t /MVi,t−1

14 A longer lag between polluting firm investment in R&D and the creation of new pollution abatement technologies
is possible. To explore this potential, we reestimate the specification in column 6 of Table 6 with patents in new
pollution abatement technologies measured over forward periods dated t +1 to t +8. All of our inferences are
similar with the longer forward patenting measures. We are grateful to an anonymous referee for suggesting this
test.

15 The results are similar if we use the firm’s “excess” return relative to the country-year average.
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Table 7
Pollution taxes and the marginal value of R&D

(1) (2) (3) (4)

Industry pollution intensity:
High High High Low

R&Di,t /MV i,t−1 1.558 0.749 1.132 1.562
(0.322)∗∗∗ (0.427)∗ (0.353)∗∗∗ (0.270)∗∗∗

Pollution taxesc,t x 1.431 0.685 −0.451
R&Di,t /MV i,t−1 (0.306)∗∗∗ (0.220)∗∗∗ (0.554)

Firm fixed effects Yes Yes Yes Yes
Firm control set Yes Yes Yes Yes
Country year fixed effects Yes Yes Yes Yes
Firm control set x Pollution taxes No No Yes Yes
Observations 14,439 14,439 14,439 15,576
Adjusted R2 .374 .378 .388 .370

This table reports the OLS estimates for Equation (2). �MV i,t /MV i,t−1 is the dependent variable. The firm-level
data are from Compustat Global and North America and consist of non-U.S. firms with at least three nonmissing
R&D observations during 1990–2012 and a primary SIC industry classification between 2000 and 3999. High
(low) polluting industries in columns 1–3 (4) are industries above (below) the median in SOx emission. All
regressions include firm and country-year fixed effects. All columns include the following firm control variables
(all scaled by lagged market value of equity): net assets, annual change in net income, dividends, cash holdings,
net financing (net stock plus debt issuance), and total debt. Regressions in columns 3 and 4 include all firm control
variables interacted with Pollution taxes. Standard errors are clustered at the country level. *p<.1; **p<.05;
***p<.01.

and the country’s pollution tax level (Pollution taxesc,t ). Xi,t is a set of firm-
year characteristics that may affect market values and be correlated with R&D
spending, including earnings, dividends, cash holdings, net assets, net financing
activities, and leverage. As with R&D, we scale these variables by the lagged
market value of equity. The specification also includes firm fixed effects (ηi),
which isolates the within-firm relation between R&D investment and changes in
equity market values and flexibly controls for any time-invariant characteristics
that may affect equity returns, such as firm-specific risk factors. Finally, the
country-year fixed effects (ηc,t ) control for shocks common to all firms in a
given country and year, including overall equity market performance.

Table 7 reports the OLS estimates for Equation (2). In the first three columns,
we focus on the subsample of firms from industries with above-median SOx

emissions. In the first column, we drop the interaction term to establish a
baseline relation between R&D investment and changes in firm equity values.
R&D shares a strong positive relation with changes in the market value of
equity, consistent with the evidence in several studies documenting a positive
link between R&D investment and firm value (e.g., Hall 1993; Hall and Oriani
2006; Chan, Lakonishok, and Sougiannis 2001; Faulkender and Wang 2006;
Hou et al. forthcoming). In the next two columns, we add the interaction
between country Pollution taxes and firm R&D. In column 2, we only interact
R&D with Pollution taxes, whereas in column 3 we also interact the full set
of firm control variables with Pollution taxes. In either case, the coefficient for
the key interaction term (α2) is positive and statistically significant, indicating
that, among firms more exposed to pollution taxes, the marginal value of R&D
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spending increases with the country pollution tax level. In contrast, the results in
column 4 show that changes in country pollution taxes do not significantly affect
how the market values R&D spending in firms from low-pollution industries.

In terms of economic magnitudes, consider the estimates in columns 3 and 4.
In a country with zero pollution taxes, the marginal value of R&D spending is
slightly higher in firms from low-pollution industries: all else equal, a one
standard deviation increase in R&D is associated with a 7.8% increase in
the market value of equity in high-pollution firms, and a 10.8% increase in
low-pollution firms. However, at the mean pollution tax value in our sample
(approximately one), the marginal effect of the same (one standard deviation)
change in R&D increases substantially for the high-pollution subsample (to
12.54%), but does not change for the low-pollution firms. Thus, the country
pollution tax level has a material (positive) impact on the marginal value of
R&D investment in polluting firms.

5. Pollution Taxes and the Different Faces of R&D

The strong positive link between country SOx taxes and R&D spending in high-
pollution firms shows that environmental policy can affect the investments that
drive technical change. The market appears to recognize the value of R&D
in high-pollution firms, yet, on average, these investments do not generate
new patentable invention. So why are polluting firms increasing R&D? This
section develops several cross-sectional tests to distinguish the two roles of
R&D investment: generating new innovation, and enhancing the firm’s ability
to assimilate and exploit outside knowledge.

5.1 R&D in low invention firms
In sharp contrast to the first face of R&D, firm investments to expand
technological absorptive capacity will generally not result in new invention.
Thus, one indication that the R&D response we identify is distinct from new
product innovation is more direct evidence that higher pollution taxes lead to
more R&D even in firms not engaged in new product innovation. We explore
this idea in Table 8 by estimating the R&D response to pollution taxes among
subsets of firms with low to no new invention output during our sample period.

In the first three columns, we focus on firms from industries with below-
median patent stocks. The first column shows that higher pollution taxes are
positively and significantly associated with R&D investment in firms from these
“Low invention” sectors. In column 2 we add the interaction between Pollution
taxes and an indicator variable equal to one if the firm is from an industry with
above-median pollution intensity. The estimates in column 2 are consistent with
our main results: within the subsample of low-invention firms, higher pollution
taxes have a relatively stronger effect on R&D among more heavily treated
(high-pollution) firms. Column 3 shows similar results when we replace the
aggregate year dummies with country-year fixed effects.
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Table 8
Pollution taxes and R&D in low invention sectors

(1) (2) (3) (4) (5) (6)

Low invention industry sort based on:
All triadic Air pollution

patent stock abatement patents

Pollution taxesc,t−1 0.061 0.010 0.059 0.019
(0.016)∗∗∗ (0.022) (0.017)∗∗∗ (0.019)

Salesi,t 0.329 0.329 0.277 0.333 0.332 0.276
(0.026)∗∗∗ (0.026)∗∗∗ (0.025)∗∗∗ (0.034)∗∗∗ (0.033)∗∗∗ (0.027)∗∗∗

Pollution taxesc,t−1x 0.078 0.082 0.068 0.076
Above-median SOx polluters (0.014)∗∗∗ (0.012)∗∗∗ (0.015)∗∗∗ (0.016)∗∗∗

Firm fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes No Yes Yes No
Firm control set Yes Yes Yes Yes Yes Yes
Country-year fixed effects No No Yes No No Yes
Observations 16,106 16,106 16,069 25,872 25,872 25,856
R2 .945 .945 .951 .953 .953 .958

This table reports the OLS estimates for Equation (1) (columns 1 and 4) and Equation (1) augmented with
interactions between country Pollution taxes and the indicator for the industry pollution intensity variable
(columns 2–3 and 5–6). R&Di,t is the dependent variable. The firm-level data are from Compustat Global
and North America and consist of non-U.S. firms with at least three nonmissing R&D observations during 1990–
2012 and a primary SIC industry classification between 2000 and 3999. Columns 1-3 (4-6) define low invention
industries as the firms located in industries below the median in the stock of triadic patents (define low invention
industries in air pollution abatement patents as not belonging to any of the high air pollution abatement patenting
industries (which together make up about 80% of all patents in air pollution abatement patents during our sample
period): Industrial inorganic chemicals (281), Motor vehicles and equipment (371), Pottery and related products
(326), Computer and office equipment (357), General industrial machinery equipment (356), Flat glass (321),
Refrigeration and service industry machinery (358), Industrial organic chemicals (286), and Fabricated rubber
products, n.e.c. (306)). Above-median SOx polluters is an indicator variable taking on the value one (zero) if the
industry is above (below) the median in SOx emission. All regressions include firm fixed effects, and columns
1–2 and 4–5 (3 and 6) include year (country-year) fixed effects. All columns include the following firm control
variables: Cash-flow-to-assets, Sales growth, Cash-holdings-to-assets, Total debt-to-assets, and IFRS. Table 1
defines the variables in detail. Standard errors are clustered at the country level. *p<.1; **p<.05; ***p<.01.

In the last three columns of Table 8 we exclude the small number of sectors
that account for the vast majority of new innovations in air pollution abatement
technologies during our sample period.16 In columns 4–6, we continue to
find a positive and significant differential relation between pollution taxes and
R&D after dropping the high-invention firms. Overall, the results in Table 8
are consistent with the idea that one important way pollution taxes affect
the nature of technical change is by encouraging low-invention firms from
pollution-intensive sectors to make new investments in R&D.

16 Nine three-digit SIC industries account for around 80% of all air pollution abatement patents. These industries
(SIC code in parentheses) are Industrial inorganic chemicals (281), Motor vehicles and equipment (371), Pottery
and related products (326), Computer and office equipment (357), General industrial machinery equipment (356),
Flat glass (321), Refrigeration and service industry machinery (358), Industrial organic chemicals (286), and
Fabricated rubber products, n.e.c. (306). Industries 281 and 371 account for one-third of all triadic patents in air
pollution abatement technologies. Only two of the high patenting sectors in air pollution abatement technologies
(281 and 286) are among the top-10 most-polluting sectors. The other high invention sectors are around the
median in terms of pollution intensity, and one (357) is among the least-polluting sectors (see Table 3).
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5.2 Process R&D
Process R&D shares a close conceptual relation with investment in absorptive
capacity. Multiple studies link incremental investment in process R&D with
the importance of absorptive capacity in a given sector (e.g., Kim 1998; Lim
2009), and some research uses spending on process R&D as a direct proxy for
investment in absorptive capacity (e.g., Leahy and Neary 2007). We do not have
cross-country data on process R&D per se, but we can identify the sectors in
which any given dollar of R&D spending is more likely to reflect process (rather
than product) R&D. Specifically, Cohen and Klepper (1996) show substantial
cross-industry variation in the importance of process R&D as a share of total
industry R&D. Using the information in Cohen and Klepper (1996), we divide
our sample into “High process R&D” and “Low process R&D” groups. To the
extent that any R&D spending in high process R&D industries is more likely to
reflect absorptive capacity, evidence of an R&D response to pollution taxes in
the high process R&D subsample is at least consistent with the idea that higher
pollution taxes lead to more of the “second face” of R&D.17

The first three columns in Table 9 report results for firms in the “High
process R&D” sample. Among these firms, there is a strong positive differential
association between pollution taxes and R&D in high-pollution firms; the
magnitude of this differential effect is considerably larger than in the baseline
(full sample) result. In sharp contrast, the final three columns show that pollution
taxes are completely unrelated to R&D spending in the “Low process R&D”
firms. These results are consistent with polluting firms responding to pollution
taxes by making technological investments that allow them to improve their
production processes.

5.3 R&D to acquire external knowledge
Cohen and Levinthal (1989) show that firms have more incentive to invest
in R&D to expand absorptive capacity if they operate in environments where
external knowledge is easier to acquire. This insight provides a relatively clean
way to distinguish the first and second faces of R&D because, all else equal,
knowledge spillovers deter new product innovation (e.g., Nelson 1959; Arrow
1962). In short, the incentive to invest in R&D for absorptive capacity reasons
is relatively stronger in environments with more knowledge spillovers, whereas
the incentive to invest in R&D for new invention reasons is relatively weaker in

17 Cohen and Klepper (1996, their Table 1) report the share of process R&D in total R&D for nine different U.S.
two-digit SIC sectors. We put firms from sectors with an above average share of process R&D in the “High process
R&D” group. The sectors in this group are Food products (SIC 20), Paper products (SIC 26), Chemicals (SIC 28),
Petroleum refining (SIC 29), Rubber and plastic products (SIC 30), and Primary metal industries (SIC 33). The
fraction of process R&D ranges from 0.36 to 0.62 in the high process R&D sectors. In the remaining (low process
R&D) sectors, the share of process R&D ranges from 0.01 to 0.15. The sectors in this group are Fabricated metal
products (SIC 34), Machinery equipment except electrical (SIC 35), Electrical and electronic equipment (SIC
36), Transportation equipment (SIC 37), and Measuring, analyzing, and controlling instruments (SIC 38). An
important caveat is that firms also transform their production processes by developing new patentable innovations
(see the evidence and discussion in Bena, Ortiz-Molina, and Simintzi 2021). In this way, sorting by spending on
process R&D is only a rough proxy for cross-sector differences in investment in absorptive capacity.
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Table 9
Pollution taxes and process R&D

(1) (2) (3) (4) (5) (6)

High process Low process
R&D sectors R&D sectors

Pollution taxesc,t−1 0.097 −0.167 0.019 0.019
(0.019)∗∗∗ (0.112) (0.024) (0.019)

Salesi,t 0.306 0.306 0.215 0.411 0.411 0.381
(0.040)∗∗∗ (0.041)∗∗∗ (0.025)∗∗∗ (0.050)∗∗∗ (0.050)∗∗∗ (0.055)∗∗∗

Pollution taxesc,t−1x 0.269 0.313 −0.001 −0.019
Above-median SOx polluters (0.106)∗∗ (0.090)∗∗∗ (0.098) (0.075)

Firm fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes No Yes Yes No
Firm control set Yes Yes Yes Yes Yes Yes
Country-year fixed effects No No Yes No No Yes
Observations 12,060 12,060 12,037 18,328 18,328 18,306
Adjusted R2 .952 .952 .960 .960 .960 .964

This table reports the OLS estimates for Equation (1) (columns 1 and 4) and Equation (1) augmented with
interactions between country Pollution taxes and the indicator for the industry pollution intensity variable
(columns 2–3 and 5–6). R&Di,t is the dependent variable. The firm-level data are from Compustat Global
and North America and consist of non-U.S. firms with at least three nonmissing R&D observations during 1990–
2012 and a primary SIC industry classification between 2000 and 3999. Columns 1–3 (4–6) define high (low)
process R&D sectors as the firms located in industries above (below) the median in process R&D as measured in
Cohen and Klepper (1996). Above-median SOx polluters is an indicator variable taking on the value one (zero) if
the industry is above (below) the median in SOx emission. All regressions include firm fixed effects, and columns
1–2 and 4–5 (3 and 6) include year (country-year) fixed effects. All columns include the following firm control
variables: Cash-flow-to-assets, Sales growth, Cash -holdings-to-assets, Total debt-to-assets, and IFRS. Table 1
defines the variables in detail. Standard errors are clustered at the country level. *p<.1; **p<.05; ***p<.01.

these environments. As a consequence, evidence of a relatively stronger R&D
response in polluting firms in high (external) knowledge environments is strong
support for the absorptive capacity mechanism.

Cohen, Nelson, and Walsh (2000) show substantial cross-industry differences
in the extent to which external knowledge is available and accessible to
firms. As with pollution intensity, we assume these differences arise from the
technological structure and nature of the industry, making it relatively easier
for firms in some sectors to acquire outside knowledge. It is in these sectors
that the incentive to invest in R&D for absorptive capacity reasons should be
strongest.

Using the scores on knowledge appropriability from Cohen, Nelson, and
Walsh (2000), we sort firms into “High spillover” and “Low spillover”
subsamples.18 The first three columns in Table 10 report the estimates for
Equation (1) for the “High spillover” subsample; columns 4–6 do the same for
firms in “Low spillover” environments. For firms in high spillover sectors, there
is a strong positive association between Pollution taxes and firm R&D spending

18 Erkens (2011) also uses the Cohen, Nelson, and Walsh (2000) data to sort industries based on information
spillovers. We take the maximum value across the five appropriability dimensions from Cohen, Nelson, and
Walsh (2000, their Table 1) and assign firms to the “High spillover” (“Low spillover”) sample if they are in an
industry with a below- (above-) median appropriability score.
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Table 10
Pollution taxes and R&D: Splits based on knowledge spillovers

(1) (2) (3) (4) (5) (6)

High spillovers Low spillovers

Pollution taxesc,t−1 0.068 0.016 0.034 0.025
(0.017)∗∗∗ (0.016) (0.024) (0.037)

Salesi,t 0.335 0.334 0.269 0.399 0.399 0.362
(0.030)∗∗∗ (0.029)∗∗∗ (0.024)∗∗∗ (0.063)∗∗∗ (0.063)∗∗∗ (0.068)∗∗∗

Pollution taxesc,t−1x 0.090 0.094 0.019 0.011
Above-median SOx polluters (0.007)∗∗∗ (0.014)∗∗∗ (0.061) (0.075)

Firm fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes No Yes Yes No
Firm control set Yes Yes Yes Yes Yes Yes
Country-year fixed effects No No Yes No No Yes
Observations 15,348 15,348 15,312 13,204 13,204 13,181
Adjusted R2 .951 .951 .957 .965 .965 .969

This table reports the OLS estimates for Equation (1) (columns 1 and 4) and Equation (1) augmented with
interactions between country Pollution taxes and the indicator for the industry pollution intensity variable
(columns 2–3 and 5–6). R&Di,t is the dependent variable. The firm-level data are from Compustat Global
and North America and consist of non-U.S. firms with at least three nonmissing R&D observations during 1990–
2012 and a primary SIC industry classification between 2000 and 3999. Columns 1-3 (4-6) define high (low)
spillover sectors as the industries below (above) the median in appropriability as measured in Cohen, Nelson,
and Walsh (2000). Above-median SOx polluters is an indicator variable taking on the value one (zero) if the
industry is above (below) the median in SOx emission. All regressions include firm fixed effects, and columns
1–2 and 4–5 (3 and 6) include year (country-year) fixed effects. All columns include the following firm control
variables: Cash-flow-to-assets, Sales growth, Cash- holdings-to-assets, Total debt-to-assets, and IFRS. Table 1
defines the variables in detail. Standard errors are clustered at the country level. *p<.1; **p<.05; ***p<.01.

(column 1). In addition, within the high spillover subsample, the link between
Pollution taxes and R&D is relatively stronger in high-pollution firms (columns
2 and 3). However, the story in “Low spillover” environments is much different:
we find no evidence of a significant R&D response to higher emission taxes
among firms located in industries with fewer knowledge spillovers (columns
4–6).

Table A8 reports similar results using two alternative ways to identify the
firms with the strongest incentive to invest in R&D to expand absorptive
capacity. In the Cohen and Levinthal (1989) model, the need for a firm to
increase its own R&D in order to absorb external knowledge is higher if the
industry the firm operates in has more “outside” or “extra-industry” knowledge.
One key measure of an industry’s extra-industry knowledge is the extent to
which research is basic (rather than applied). The results in columns 1-4 in
Table A8 show a stronger (differential) response to emissions taxes among
polluting firms in industries where R&D is more heavily geared toward basic
scientific development. Alternatively, Bloom, Schankerman, and Van Reenen
(2013) estimate cross-sector differences in technology spillovers across firms.
If polluting firms increase R&D to acquire outside knowledge, we expect
stronger effects in the sectors with more technology spillovers. The estimates
in columns 5-8 in Table A8 are consistent with this idea: we find a larger (and
more significant) positive relation between pollution taxes and R&D spending
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Table 11
Pollution taxes and the market value of the second face of R&D

(1) (2) (3) (4) (5) (6)

Low invention High process High spillover
sectors R&D sectors sectors

R&Di,t /MV i,t−1 0.667 0.992 0.856 1.314 0.664 1.017
(0.373)∗ (0.399)∗∗ (0.395)∗∗ (0.415)∗∗∗ (0.339)∗ (0.338)∗∗∗

Pollution taxesc,t x 1.375 0.717 1.321 0.352 1.411 0.651
R&Di,t /MV i,t−1 (0.297)∗∗∗ (0.228)∗∗∗ (0.298)∗∗∗ (0.287) (0.300)∗∗∗ (0.234)∗∗

Firm fixed effects Yes Yes Yes Yes Yes Yes
Firm control set Yes Yes Yes Yes Yes Yes
Country year fixed effects Yes Yes Yes Yes Yes Yes
Firm control set x Pollution taxes No Yes No Yes No Yes
Observations 7,913 7,913 9,541 9,541 8,271 8,271
Adjusted R2 .378 .385 .384 .398 .396 .406

This table reports the OLS estimates for Equation (2). �MVi,t /MVi,t−1 is the dependent variable. The firm-level
data are from Compustat Global and North America and consist of non-U.S. firms with at least three nonmissing
R&D observations during 1990–2012 and a primary SIC industry classification between 2000 and 3999. All
firms are located in high polluting sectors, defined as industries above the median in SOx emission. Columns
1 and 2 define low invention sectors as the firms located in sectors below the median in the stock of triadic
patents. Columns 3 and 4 define high process R&D sectors as the industries above the median in process R&D
as measured in Cohen and Klepper (1996). Columns 5 and 6 define high spillover sectors as the industries below
the median in appropriability as measured in Cohen, Nelson, and Walsh (2000). All regressions include firm and
country-year fixed effects and the following firm control variables (all scaled by lagged market value of equity):
net assets, annual change in net income, dividends, cash holdings, net financing (net stock plus debt issuance),
and total debt. Regressions in even-numbered columns include all firm control variables interacted with Pollution
taxes. Standard errors are clustered at the country level. *p<.1; **p<.05; ***p<.01.

among the high-pollution firms located in industries with the highest technology
spillovers.19

5.4 Market value and the second face of R&D
The R&D response to higher pollution taxes is concentrated in firms that
generally do less new product innovation and have more incentive to invest
in R&D to acquire outside knowledge. It is difficult to rationalize this full
set of results without appealing to the “second face” of R&D spending. One
possibility, however, is that the R&D by affected firms actually does not add
value, perhaps because the responsive firms are poor innovators, or perhaps
because we have stumbled on a spurious R&D response in precisely the subsets
of firms with the most incentive to invest in R&D for absorptive capacity
reasons.

To evaluate this potential, we return to the market-value specification we
studied in Section 5. Table 11 reports the estimates for Equation (2) for
subsamples of firms that are both (a) most affected by the pollution tax (from
industries with above-median pollution intensity), and (b) most likely to invest
in R&D for absorptive capacity reasons. Specifically, in the first two columns of

19 We put a given firm in the high (low) “Basic research” group if it is located in an industry above (below) the
median in terms of the maximum value of the importance of basic versus applied sciences in Cohen, Nelson,
and Walsh (2000). We put a firm in the high (low) “Technology spillovers” group if it is located in an industry
above (below) the median in terms of average technology spillover during the 1980s by three-digit SIC sector in
the United States from Bloom, Schankerman, and Van Reenen (2013).
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Table 11 we focus on high-pollution firms from industries with below-median
patent stocks (the “Low invention” industries we studied in columns 1–3 of
Table 8); in columns 3 and 4 we focus on high-pollution firms from industries
with above-median process R&D (the “High process R&D” industries we
studied in columns 1-3 of Table 9); and in columns 5 and 6 we focus on high-
pollution firms from industries with below-median appropriability (the “High
spillover” industries we reported in columns 1–3 of Table 10).

We are interested in whether the country pollution tax level affects the
marginal value of R&D spending in these subsets of firms. For each sort, we
report a specification where R&D is the only firm-level variable interacted with
Pollution taxes (first column), as well as a specification where all firm-level
controls are interacted with Pollution taxes (second column). In five of the six
regressions in Table 11, the coefficient estimate on the interaction between firm
R&D spending and country Pollution taxes is positive, statistically significant,
and similar in magnitude to the estimates in Table 7. The only exception is the
second specification in the “High process R&D” sample (column 4), where
the interaction term is positive, but smaller in magnitude and not statistically
significant. Thus, pollution taxes are associated with an increase in the marginal
value of R&D for high-pollution firms in “Low invention”, “High process
R&D”, and “High spillover” industries, suggesting these firms are not investing
in R&D for irrational or spurious reasons.

5.5 Do any high-pollution firms innovate?
We conclude with a final set of results that speak to the plausibility of
our findings and the various ways environmental policy can encourage
technical change. Some high-pollution firms have a history of developing clean
technologies, and, as such, it is more likely to see evidence of the first face of
R&D for these firms. For the results in Table 12, we start by focusing on firms
from industries above the median in pollution intensity (the industries we have
already shown drive the positive relation between pollution taxes and R&D). We
then subdivide this sample of polluting firms based on whether or not they are in
an industry with a history of invention in air pollution abatement technologies.
We identify the “new invention” sectors based on whether they have a positive
stock of patents in the emission abatement technology classes (Table B1) at the
start of our sample period (1990). Note that there are roughly twice the number
of observations in the subsample of polluting firms without a history of new
invention in these technologies.

In the first two columns of Table 12, we estimate the baseline regression
with R&D as the outcome variable. There is a positive and almost identical
coefficient for the pollution tax variable in both subsamples, indicating that
polluting firms in both high- and low-invention industries increase R&D when
pollution taxes increase (the estimate is noisier in the high-pollution, high-
invention subsample, and it just misses statistical significance at conventional
levels). In contrast, the estimates in the last two columns show that pollution

4545

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/35/10/4518/6510950 by M

athem
atical Statistics user on 19 M

arch 2025



[12:57 3/9/2022 RFS-OP-REVF220003.tex] Page: 4546 4518–4560

The Review of Financial Studies / v 35 n 10 2022

Table 12
Pollution taxes and clean invention in high-pollution firms

(1) (2) (3) (4)

Industry air pollution abatement
patenting in 1990:

High Low High Low

R&D Patent count

Pollution taxesc,t−1 0.092 0.093 0.445 0.005
(0.068) (0.020)∗∗∗ (0.208)∗∗ (0.003)

Firm fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Observations 5,593 10,627 5,581 10,596
Adjusted R2 .965 .944 .257 .000

This table reports the OLS estimates for Equation (1). R&Di,t is the dependent variable in columns 1 and 2 and
Patent counti,t is the dependent variable in columns 3 and 4. The firm-level data are from Compustat Global and
North America and consist of non-U.S. firms with at least three nonmissing R&D observations during 1990–2012
and a primary SIC industry classification between 2000 and 3999. Only firms from industries above the median
in SOx emission are included. Patent count based on technology classes classified as air pollution abatement
technologies (based on Hascic and Migotto 2015; reported in Table B1) are reported in columns 3 and 4. All
regressions include firm and year fixed effects and Sales. Regressions in columns 3 and 4 include Stock of triadic
patentsi,t−1 and the following country-level control variables: Public environmental R&D to GDP and GDP
per capita. Table 1 defines the variables in detail. Standard errors are clustered at the country level. *p<.1;
**p<.05; ***p<.01.

taxes are associated with new inventions in pollution abatement technologies
only in the subset of high-pollution firms from industries with a prior history of
innovating in this space. These results are consistent with a broader emphasis
in the literature on path dependence in technical change: to the extent higher
emissions taxes encourage new invention in polluting firms, it is in the firms
with a prior history of invention in pollution mitigation technologies. It is also
consistent with the evidence of a new invention response in studies that focus
on the effects of environmental taxes in particular industries with a history of
new product innovation (e.g., Aghion et al. 2016).

6. Conclusion

Higher taxes on SOx emissions are associated with a substantial increase in
firm-level R&D spending. The pollution taxes have relatively stronger effects on
R&D in sectors with dirtier production technologies, as expected if the relation
between pollution taxes and R&D is causal. In contrast to R&D, pollution
taxes do not lead to more patenting in high-pollution firms, suggesting that
firms increase R&D to improve their ability to use and assimilate external
knowledge rather than to develop new innovations. Consistent with this idea,
the R&D response to pollution taxes is concentrated in sectors where external
knowledge is easier to acquire. Overall, our findings suggest that investment in
technological absorptive capacity is a first-order response when noninnovative
firms with dirty production technologies face higher emissions taxes.

This evidence is particularly relevant for the theoretical literature on
endogenous growth under environmental constraints (e.g., Acemoglu et al.
2012, 2016). An important insight from this work is the role of policy in

4546

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/35/10/4518/6510950 by M

athem
atical Statistics user on 19 M

arch 2025



[12:57 3/9/2022 RFS-OP-REVF220003.tex] Page: 4547 4518–4560

Emissions Taxes and R&D Investment in Polluting Firms

encouraging the development and adoption of cleaner technologies. Prior
studies show that taxes on the dirty products an industry produces can encourage
new invention in the affected sector (Aghion et al. 2016); our work shows
tax policy can also encourage the technology investments that allow firms to
broadly overhaul the way they produce, in order to reduce pollution at the
source (e.g., Hammar and Löfgren 2010; Xie et al. 2015). In this way, we
provide novel evidence on the micro-level linkages through which market-based
environmental policies can influence technical change.

Our work raises several interesting questions for future research. First, several
studies explore how firm R&D spending responds to tax incentives (e.g., Berger
1993; Bloom, Griffith, and Van Reenen 2002; Wilson 2009; Brown, Martinsson,
and Petersen 2017), and much of the theoretical literature on directed technical
change analyzes the role of both emissions taxes and research subsidies. We
focus on emissions taxes, primarily because of the nature of our sample: there is
significant country-level variation in SOx emissions taxes in our sample period,
but little variation in R&D tax credits. Nonetheless, an important question for
future empirical research would be how the intersection of pollution taxes and
research subsidies affects firm-level technology investment decisions.

Beyond research subsidies, other legal and institutional determinants of
R&D investment exist, so it also would be interesting to know how these
factors influence the effectiveness of environmental policies at encouraging the
development and use of clean technologies. In particular, Brown, Martinsson,
and Petersen (2013) find that cross-country differences in stock market
development affect firms’ R&D spending; De Haas and Popov (2019) link
stock market development with innovation in clean technologies; and Levine
et al. (2019) show that tighter credit conditions increase the firm’s emissions
of toxic pollutants. This research suggests that financial market conditions
may play an important role in determining how much new technology
investment polluting firms are able to make when confronted with higher
emissions taxes.

Finally, we have focused on the way high-pollution firms change their R&D
investments when countries increase taxes on SOx emissions. It would be
interesting to explore whether firms respond in a similar way to other types
of environmental policies, including taxes on different types of emissions (e.g.,
carbon and nitrogen), and command-and-control regulations (e.g., pollution
standards). In addition, our work leaves open the question of whether and how
the R&D investments that firms make ultimately affect the firm’s emissions.
Although countries are increasingly interested in mandating climate-related
disclosures (e.g., Jouvenot and Krueger 2019), we are not aware of any cross-
country data on firm-level emissions during our sample period that would allow
us to trace out the linkages between SOx taxes, R&D investments, and SOx

emissions. Nonetheless, a systematic study of how policy-induced investments
in new technology affect the extent of noxious manufacturing emissions in
high-pollution firms would be a valuable next step.
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Appendix A

Table A1
Observation counts and country-level rates of pollution taxes

Number of Number of Pollution tax
observations firms mean (1990–2012)

Australia 1,463 188 0.88
Austria 266 30 0.00
Belgium 291 34 0.00
Canada 2,652 308 0.96
Denmark 436 44 4.30
Finland 673 57 0.00
France 1,239 155 0.98
Germany 1,854 222 0.00
Greece 163 22 0.00
Ireland 225 17 0.00
Italy 361 59 1.76
Japan 18,308 1,370 6.00
Korea 269 87 4.73
Netherlands 349 40 0.00
Norway 275 40 0.00
Spain 107 21 1.34
Sweden 1,146 120 0.00
United Kingdom 3,479 382 0.00
Total 33,556 3,196 –

This table reports the number of observations (column 1) and unique firms (column 2) by country in the full
sample and average Pollution taxes by country (column 3). Table 1 defines the variables in detail.

Table A2
Correlation matrix: Firm variables

Cash-flow- Sales Cash- Total debt- Patent Patent
R&D Sales to-assets growth to-assets to-assets IFRS count citations

R&D 1.000
Sales 0.763 1.000

(.000)
Cash-flow-to-assets 0.213 0.348 1.000

(.000) (.000)
Sales growth 0.033 0.047 0.130 1.000

(.000) (.000) (.000)
Cash-to-assets 0.026 −0.226 −0.169 0.215 1.000

(.000) (.000) (.000) (.000)
Total debt-to-assets −0.027 0.082 −0.082 0.048 −0.182 1.000

(.000) (.000) (.000) (.000) (.000)
IFRS 0.321 0.301 0.022 0.002 0.014 −0.013 1.000

(.000) (.000) (.000) (.724) (.008) (.018)
Patent count 0.087 0.129 0.107 −0.017 −0.053 0.003 −0.140 1.000

(.000) (.000) (.000) (.002) (.000) (.641) (.000)
Patent citations 0.213 0.197 0.139 −0.008 −0.042 0.011 −0.145 0.674 1.000

(.000) (.000) (.000) (.151) (.000) (.050) (.000) (.000)

p-values are in parentheses.
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Table A3
Correlation matrix: Country variables

GDP Public User
Pollution per env. R&D cost

taxes capita -to-GDP of R&D

Pollution taxes 1.000
GDP per capita −0.303 1.000

(.237)
Public env. −0.008 −0.034 1.000
R&D-to-GDP (.977) (.896)
User cost of R&D 0.123 −0.117 0.378 1.000

(.638) (.654) (.135)

p-values are in parentheses.

Table A4
Pollution taxes and R&D investment: Alternative samples

(1) (2) (3) (4) (5)

Drop Drop Drop no
Drop United Drop three change
Japan Kingdom Canada largest SOx tax

A. Baseline estimates

Pollution taxesc,t−1 0.033 0.065 0.065 0.025 0.032
(0.015)∗∗ (0.020)∗∗∗ (0.020)∗∗∗ (0.018) (0.016)∗

Salesi,t 0.323 0.313 0.329 0.360 0.264
(0.040)∗∗∗ (0.042)∗∗∗ (0.045)∗∗∗ (0.060)∗∗∗ (0.049)∗∗∗

B. Differential effects

Pollution taxesc,t−1 −0.025 0.002 0.003 −0.029 −0.029
(0.010)∗∗ (0.012) (0.013) (0.015)∗ (0.012)∗∗

Salesi,t 0.322 0.312 0.328 0.358 0.263
(0.040)∗∗∗ (0.042)∗∗∗ (0.045)∗∗∗ (0.060)∗∗∗ (0.048)∗∗∗

Pollution taxesc,t−1x 0.035 0.052 0.048 0.029 0.038
Q2 of SOx polluters (0.020)∗ (0.016)∗∗∗ (0.017)∗∗ (0.025) (0.024)
Pollution taxesc,t−1x 0.080 0.088 0.080 0.071 0.079
Q3 of SOx polluters (0.030)∗∗ (0.043)∗ (0.041)∗ (0.022)∗∗∗ (0.038)∗
Pollution taxesc,t−1x 0.094 0.097 0.100 0.094 0.102
Q4 of SOx polluters (0.015)∗∗∗ (0.014)∗∗∗ (0.013)∗∗∗ (0.016)∗∗∗ (0.014)∗∗∗

Firm fixed effects Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes
Observations 15,237 30,068 30,899 9,114 6,520

This table reports the OLS estimates for Equation (1) (panel A) and Equation (1) augmented with interactions
between country Pollution taxes and the indicators for the industry pollution intensity quartiles (panel B). R&Di,t
is the dependent variable. The firm-level data are from Compustat Global and North America and consist of non-
U.S. firms with at least three nonmissing R&D observations during 1990–2012 and a primary SIC industry
classification between 2000 and 3999. A large country is defined as one with more than 2,500 observations
(Japan, the United Kingdom, and Canada). No change SOx tax refers to a country without any change in the
pollution tax during the sample period (see Table A1). Qk of SOx polluters is an indicator variable taking on
the value one if the firm is located in the kth quartile in SOx emission. All regressions include firm and year
fixed effects. Table 1 defines the variables in detail. Standard errors are clustered at the country level. *p<.1;
**p<.05; ***p<.01.
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Table A5
Pollution taxes and R&D investment: Other channels

(1) (2) (3) (4) (5) (6)

1997–2001 IFRS reform

Salesi,t 0.259 0.259 0.260 0.259 0.312 0.352
(0.032)∗∗∗ (0.032)∗∗∗ (0.032)∗∗∗ (0.032)∗∗∗ (0.036)∗∗∗ (0.038)∗∗∗

Other channel x −0.018 −0.012 −0.022 −0.026
Q2 of SOx polluters (0.038) (0.037) (0.099) (0.101)
Other channel x 0.001 0.008 −0.011 −0.019
Q3 of SOx polluters (0.016) (0.015) (0.047) (0.045)
Other channel x −0.012 −0.004 −0.038 −0.051
Q4 of SOx polluters (0.027) (0.027) (0.038) (0.039)
Pollution taxesc,t−1x 0.041 0.045
Q2 of SOx polluters (0.016)∗∗∗ (0.023)∗
Pollution taxesc,t−1x 0.084 0.086
Q3 of SOx polluters (0.021)∗∗ (0.021)∗∗∗
Pollution taxesc,t−1x 0.102 0.108
Q4 of SOx polluters (0.015)∗∗∗ (0.015)∗∗∗
Pollution taxesc,t−1 0.070 0.066

(0.017)∗∗∗ (0.018)∗∗∗
Not IFRSi,t −0.033 −0.028

(0.044) (0.039)
Pollution taxesc,t−1x −0.027 −0.025
Not IFRSi,t (0.019) (0.018)

Firm fixed effects Yes Yes Yes Yes Yes Yes
Country-year fixed effects Yes Yes Yes Yes No No
Year fixed effects No No No No Yes Yes
Observations 33,529 33,529 33,529 33,529 33,545 33,343
Adjusted R2 .959 .959 .959 .959 .955 .957

This table reports the OLS estimates for Equation (1) augmented with interactions between country Pollution
taxes and the indicators for the industry pollution intensity quartiles. R&Di,t is the dependent variable. The
firm-level data are from Compustat Global and North America and consist of non-U.S. firms with at least three
nonmissing R&D observations during 1990–2012 and a primary SIC industry classification between 2000 and
3999. Other channel is either (1997–2001) or IFRS reform. (1997–2001) is an indicator variable taking on the
value one for all countries and firm-years (zero) during 1997–2001 (1990–1996 and 2002–2012). IFRS reform
reports the year a country implements IFRS accounting standards. Qk of SOx polluters is an indicator variable
taking on the value one if the firm is located in the kth quartile in SOx emission. Not IFRS in an indicator
variable taking on the value one (zero) if the firm follows IFRS (or not). All regressions include firm fixed
effects: columns 1–4 include country-year, and columns 5 and 6 include year fixed effects. Column 6 include
the following firm-level control variables: Cash-flow-to-assets, Sales growth, Cash-holdings-to-assets, and Total
debt-to-assets. Table 1 defines the variables in detail. Standard errors are clustered at the country level. *p<.1;
**p<.05; ***p<.01.
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Table A6
Pollution taxes and R&D investment: Industry share in economy

(1) (2) (3) (4)

Salesi,t 0.313 0.320 0.312 0.319
(0.036)∗∗∗ (0.044)∗∗∗ (0.036)∗∗∗ (0.044)∗∗∗

Industry share R&Dcj,t 0.440 0.436
(0.349) (0.341)

Industry share Employmentcj,t 0.568 0.545
(0.186)∗∗∗ (0.187)∗∗∗

Pollution taxesc,t−1 0.064 0.041 0.003 −0.017
(0.020)∗∗∗ (0.017)∗∗ (0.013) (0.011)

Pollution taxesc,t−1x 0.049 0.040
Q2 of SOx polluters (0.015)∗∗∗ (0.021)∗
Pollution taxesc,t−1x 0.093 0.071
Q3 of SOx polluters (0.040)∗∗ (0.038)∗
Pollution taxesc,t−1x 0.092 0.097
Q4 of SOx polluters (0.016)∗∗∗ (0.016)∗∗∗

Firm fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Observations 33,545 27,866 33,545 27,866
Adjusted R2 .955 .961 .955 .961

This table reports the OLS estimates for Equation (1) (columns 1 and 2) and Equation (1) augmented with
interactions between country Pollution taxes and the indicators for the industry pollution intensity quartiles
(columns 3 and 4). R&Di,t is the dependent variable. The firm-level data are from Compustat Global and North
America and consist of non-U.S. firms with at least three nonmissing R&D observations during 1990–2012 and
a primary SIC industry classification between 2000 and 3999. Qk of SOx polluters is an indicator variable taking
on the value one if the firm is located in the kth quartile in SOx emission. All regressions include firm and year
fixed effects. Table 1 defines the variables in detail. Standard errors are clustered at the country level. *p<.1;
**p<.05; ***p<.01.

Table A7
Pollution taxes and future patent citations

(1) (2) (3) (4) (5) (6)

Pollution taxesc,t−1 0.009 0.027 −0.034 0.196 0.247 0.232
(0.026) (0.034) (0.021) (0.084)∗∗ (0.111)∗∗ (0.100)∗∗

Stock of triadic 0.398 0.397 0.011 0.011
patentsi,t−1 (0.020)∗∗∗ (0.019)∗∗∗ (0.002)∗∗∗ (0.002)∗∗∗

Pollution taxesc,t−1x 0.284 −0.065
Q2 of SOx polluters (0.221) (0.067)
Pollution taxesc,t−1x 0.095 0.024
Q3 of SOx polluters (0.047)∗ (0.142)
Pollution taxesc,t−1x 0.026 0.044
Q4 of SOx polluters (0.034) (0.062)

Firm fixed effects Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes
Observations 33,442 33,442 33,442 33,442 33,442 33,442
Adjusted R2 .836 .841 .841 .237 .238 .238

This table reports the OLS estimates for Equation (1) (columns 1–2 and 4–5) and Equation (1) augmented with
interactions between country Pollution taxes and the indicators for the industry pollution intensity quartiles
(columns 3 and 6). Patent citationsi,t is the dependent variable. The firm-level data are from Compustat Global
and North America and consist of non-U.S. firms with at least three nonmissing R&D observations during 1990–
2012 and a primary SIC industry classification between 2000 and 3999. Patents from technology classes classified
as air pollution abatement technologies (based on Hascic and Migotto 2015; reported in Table B1) are reported
in columns 4–6. Qk of SOx polluters is an indicator variable taking on the value one if the firm is located in the
kth quartile in SOx emission. All regressions include Sales and the following country-level control variables:
Public environmental R&D to GDP and GDP per capita. Table 1 defines the variables in detail. Standard errors
are clustered at the country level. *p<.1; **p<.05; ***p<.01.
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B. Matching between PATSTAT and Compustat
Here, we describe how we match patent assignees of the patents in Worldwide Patent Statistical
Database (PATSTAT) maintained by the European Patent Office (EPO) to firms in the Compustat
Global and North America database for the January 1985 to December 2012 period. Our
methodology draws on those of Hall, Jaffe, and Trajtenberg (2001) and Bena et al. (2017).

PATSTAT contains bibliographical data relating to more than 100 million patent documents
from leading industrialized and developing countries. It also includes the legal status data from
more than 40 patent authorities contained in the EPO worldwide legal status database (INPADOC).
We use the following basic outline to construct our sample and matching on patents.

1. We begin with firms from Compustat Global and include Canadian firms from Compustat
North America. For a firm to enter the sample it has to have fully consolidated financial
statements, a primary industry classification in the manufacturing sector, and at least three
nonmissing R&D observations over the period 1990 to 2012. Next, we require countries to
have at least 10 firms. We also drop firms from industries without any SOx emissions based
on data from Levinson (2009). Finally, we merge the firm-level data from Compustat with
information on time-series changes in air pollution taxes for 18 OECD countries. This
gives us the “Compustat sample.” These sample selection criteria leave us with 3,594
unique firms.

2. We need to create meaningful names based on the company names in the Compustat
sample. We do this to be able to use the firms’ names in an SQL query to PATSTAT.
We capitalize all firm name strings. We then ensure that firm name strings (Compustat
field: conm) only contain A–Z, and 0–9 characters. We then remove approximately 300
regular expressions for firms from (among others) the United Kingdom, France, Spain,
Italy, Sweden, Belgium, Denmark, Norway, the Netherlands, Poland, Greece, Germany,
Czech Republic, Bulgaria, Belgium, and Japan. Examples of words and suffixes that we
remove are HOLDINGS, LTD, COMPANY, SARL, and AKTIENGESELLSCHAFT. The
goal with these removals is to ensure that our SQL query does not miss patent filings due
to inclusion or exclusion of regular expressions. We remove countries’ names from the
firms’ names. For borderline cases we shorten the firms’ names to increase the number of
“matches” in our SQL query.

3. We use these shortened firm names in an SQL query to PATSTAT. In this SQL query, we
retrieve patent filings where a part of doc standard name is—as mentioned above—the
same as the shortened name from the Compustat file. This query returns data on 2.2 million
semi unique firms/individuals filing patents. Semiuniqueness is established by PATSTAT’s
unique identifier doc std id. However, a single firm may show up having a number of doc
std id’s because of the way the firm’s name is written on the patent application form.

4. We remove firms without patents filed after 1984 and we clean and shorten the names that
we obtain from PATSTAT (doc std name). Again, we capitalize all letters, and we remove
regular expressions like HOLDINGS, etc. In addition, we shorten common firm names.

5. To reduce the number of false positive matches, we append the file containing the names
of our Compustat firms to include even such Compustat firms that are not in “our” sample.
We also clean the firm names in this stage as described above.

6. We use a matching algorithm provided by Raffo (2015) and Raffo and Lhuillery (2009)
(Stata’s MATCHIT) to match the shortened Compustat names (whole names, can consist of
several words) and the shortened PATSTAT names (whole names, can consist of several
words). Using Stata’s MATCHIT command we obtain a similarity score between two
different text strings by performing different string-based matching techniques. It returns
a new numeric variable (similscore) containing the similarity score, which ranges from 0 to
1. A similscore of 1 implies a perfect similarity according to the string-matching technique
chosen and decreases when the match is less similar. We remove matches where similscore
is below 0.5.
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Table B1
Definition of IPC classes for patents in emissions abatement from stationary sources

Description IPC codes

Postcombustion technologies

Chemical or biological purification of waste gases (e.g., engine exhaust
gases, smoke, fumes, flue gases or aerosols; removing sulfur oxides,
nitrogen oxides)

B01D53/34-72

Incinerators or other apparatus specially adapted for consuming waste
gases or noxious gases

F23G7/06

Arrangements of devices for treating smoke or fumes of purifiers, for
example, for removing noxious material

F23J15

Shaft or like vertical or substantially vertical furnaces; arrangements of
dust collectors

F27B1/18

Integrated technologies

Blast furnaces; dust arresters C21B7/22
Combustion apparatus characterized by means for returning flue gases to

the combustion chamber or to the combustion zone
F23B80

Combustion apparatus characterized by arrangements for returning
combustion products or flue gases to the combustion chamber

F23C9

Apparatus in which combustion takes place in a fluidized bed of fuel or
other particles

F23C10

The descriptions and IPC classes come from Hascic and Migotto (2015).

7. We measure the success of this match with what we achieved in step 6. To do this, we
divide firm names into separate words. We do this both for the PATSTAT name and the
Compustat name. We then generate a similscore for each word of our matches. This means
that a similscore is generated for the first word in the PATSTAT name and the first word
in the Compustat name and (if relevant) the same for second and third words. We do this
for second and third words when both names have the same number of words. We then
multiply the similscores of the matches to arrive at the final similscore. We only keep
similscores that are equal to one.

8. We then delete instances where one firm’s PATSTAT identifier (doc standard name id) is
matched to several Compustat firms (GVKEY).

9. We then drop all firms (along with the matched patents) that are not in the original sample
of the 3,594 Compustat firms.

This gives us a final sample of 3,196 unique Compustat firms (identified by GVKEY) which are
matched to around 75,000 semi unique firms filing patents (identified by doc std name id). Using
the information on the doc std name from PATSTAT we then retrieve the patent information from
PATSTAT. We count for each firm the number of triadic patents using the INPADOC data set.20 We
also compile the sum of all patents that are not defined as a triadic patent (and call them nontriadic).
We also separate patents between air pollution abatement patents and non-air-pollution abatement
patents based on Hascic and Migotto (2015). See Table B1 for the different technology classes and
descriptions. We also count the citations from each of the triadic and nontriadic patents.

C. Security Daily

Here, we describe how we merged daily market price data from Security Daily to our sample.
Security Daily comprises data on publicly listed companies around the world dating back to 1985.
This data set includes a GVKEY identifier and can be merged with Compustat Global. We follow

20 For more details on the definition of triadic patents, see Dernis and Khan (2004) and Martinez (2004).
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the literature (e.g., Faulkender and Wang 2006) and use the closing price on the final trading day
of the fiscal year (prcc_f) and the number of outstanding common shares (csho) to measure firm
market value of equity. In the instances in which more than one security is tied to the same firm-year
(less than 5% of the observations), we use the first security (the variable iid is equal to one), which
corresponds to the first security issued and corresponds to the stock listed in the domestic stock
market in domestic prices. We convert and deflate all prices in to US$(2000) as we do in our main
sample with the accounting variables.

We measure market value of equity as the product of the closing price on the final trading day
and the number of outstanding common shares (MV). Our main dependent variable is equal to
MV i,t −MV i,t−1 divided by MVi,t−1. The vector of firm controls, X, in Equation (2) comprises the
following control variables: net assets (defined as book value of total assets minus cash holdings
divided by the lagged market value of the firm’s equity) change in net income (defined as the
annual change in income before extraordinary items divided by the lagged market value of the
firm’s equity), annual dividend payment (divided by the lagged market value of the firm’s equity),
firm cash holdings (divided by the lagged market value of the firm’s equity), net financing raised
(measured as net stock issues plus net debt issues divided by the lagged market value of the firm’s
equity), and leverage (measured as stock of long-term debt divided by the lagged market value of
the firm’s equity).

D. Evaluating Stability of Emission Intensity Measure

The OECD reports relatively disaggregated data on SOx emission for three of our sampled countries:
Italy, the Netherlands, and Denmark (see the Air Emission Accounts). Table D1 reports SOx

emission intensity (measured as tonnes of SOx per million of sales in local currency) for these
three countries. The data cover 12 of our sample years (2000–2012) and are reported for 17 two-
digit and three-digit ISIC industry classes. Four industries—Coke and refined petroleum products,
Other nonmetallic mineral products, Basic metals and Chemicals and chemical products—are
consistently the most SOx -polluting industries.21 These four ISIC industries include 9 of the 10
most SOx -emitting industries in Table 3. The eighth most SOx -emitting U.S. industry in Table 3,
Grain mill products (SIC 204), is part of Food manufacturing, a broadly aggregated sector for the
non-U.S. countries in Table D1. Overall, the comparative evidence in Table D1 suggests that cross-
industry differences in pollution intensity are very similar within the type of developed economy
that we study.

21 Denmark’s fourth most-polluting industry is instead Food products, beverages, and tobacco products. This is
because Denmark reports essentially no economic activity in Basic metals.
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