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We compare prices of financial derivatives whose payouts are based on future weather 

outcomes to CMIP5 climate model predictions as well as observed weather station data 

across eight cities in the US from 2001 through 2020. Derivative prices respond both to 

short-term weather forecasts for the next two weeks and longer-term warming trends. We 

show that the long-term trends in derivative prices are comparable to station-level data 

and climate model output. The one exception is February in the northeastern US, where 

financial markets price in a polar vortex-induced cooling effect, a recent scientific finding 

that was not present in the older CMIP5 climate output. When looking at the spatial and 

temporal heterogeneity in trends, futures prices are more aligned with climate model out- 

put than observed weather station trends, suggesting that market participants closely align 

their expectations with scientific projections rather than recent observations. 
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1. Introduction 

Scientists overwhelmingly agree that the climate is

changing because of human activity. The American Asso-

ciation for the Advancement of Science (2006) reported

that “the scientific evidence is clear: global climate change

caused by human activities is occurring now.” But public

opinion in the US remains mixed. As of 2016, less than half

of Americans believed that the earth is getting warmer due

to human activity, a number that has not budged much

since the Pew Research Center started asking the question
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in 2006. 1 Views on climate change vary greatly across ge- 

ography, political affiliation, educational status, and eco- 

nomic sector ( Leiserowitz et al., 2017; Howe et al., 2015 ). 

Politicians in the US have questioned the evidence on cli- 

mate change, with some famously calling it an “elaborate 

hoax.”

Given the divergent beliefs about climate change, de- 

bate persists about the accuracy of global climate models 

and the extent to which agents incorporate these projec- 

tions into their actions. We address these issues by ex- 

amining how market participants update their expecta- 

tions about climate over time. The Chicago Mercantile Ex- 

change (CME) offers futures contracts for eight cities on 

two main weather products: cooling degree days (CDDs), 

which measure how much cooling is necessary during 

hot temperatures in summer, and heating degree days 

(HDDs), which measure how much heating is required 

during cold temperatures in winter. The payoffs from 
1 https://www.pewresearch.org/science/2016/10/04/ 

public- views- on- climate- change- and- climate- scientists/ . 
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these contracts depend on observed temperatures over the

course of a month. The contracts are traded before the

month in which the weather is realized and thus provide

a direct measure of the market’s view on the expected

climate. 

First, we show that the futures market capitalizes

weather shocks, that is, deviations from climate averages,

in the two weeks leading up to such unexpected weather

deviations. This is consistent with Dorfleitner and Wim-

mer (2010) and the more general finding that for horizons

beyond 8–10 days, “the nature of temperature dynamics

simply makes any point forecast of temperature unlikely to

beat the climatological forecast at long horizons, because

all point forecasts revert fairly quickly to the climatolog-

ical forecast” ( Campbell and Diebold, 2005 , p.12). Futures

prices several weeks before the start of a month should re-

flect expectations about a month’s weather before the out-

comes can be known. 

Second, we find that market expectations, as measured

by futures prices when weather outcomes are unknown,

have been changing at the same annual rate as tempera-

ture projections in the CMIP5 archive, the latest repository

in which various climate modeling groups made predic-

tions for 2006 onward. The time trend also aligns with the

observed annual change from weather station data. All find

significant warming as shown by an increase in CDDs in

summer and a decrease in HDDs in winter. Climate models’

predictions have materialized, especially on average, vali-

dating model projections. 

Third, the futures market closely follows advances in

the climate literature. When we regress the trend in fu-

tures prices for each airport and contract month observed

over our sample period on the observed trend at the

weather station as well as climate projections, the latter

has the most explanatory power. Further, the futures mar-

ket seems to price in recent climatological advances that

were not available in the CMIP5 archive and have not been

detectable in weather station observations. Recent research

predicts that a shift in the jet stream will reduce late win-

ter temperatures in the northeastern US via an increase in

cold air from the Arctic (i.e., a polar vortex). Likewise, the

futures market has shown a significant increase in HDDs in

February. Together this suggests that market participants

are taking into account both global climate model output

and the latest research rather than simply projecting for-

ward past time trends. 

Finally, we present evidence in the Online Appendix

how oceanic oscillations like El Niño-Southern Oscillation

(ENSO) affect tem peratures over the medium term across

the eight cities in our sample. Employing LASSO regres-

sions to select relevant oceanic oscillation indices, we find

that removing these large-scale effects reduces the year-to-

year variability in observed weather but does not change

the time trend. The observed warming trend is hence not

driven by oceanic drivers of natural variability in tempera-

tures but rather by increased greenhouse gas emissions. 

In addition to contributing to the literature on the im-

pact of climate change on firms and financial markets, our

findings have relevance to climate adaptation. Economists

have estimated the benefits and costs from a changing

climate ( Auffhammer, 2018 ). Many of the recent micro-
628 
level estimates relate outcomes of interest to random ex- 

ogenous year-to-year weather fluctuations to obtain unbi- 

ased damage estimates ( Dell et al., 2014 ). While random 

and exogenous year-to-year variation is preferable from a 

statistical perspective, adaptation to a permanent change 

in climate might mitigate some of the weather sensitivity 

that is observed in response to unknown random weather 

shocks. Agents should undertake adaptation investments 

in response to anticipated permanent shifts in the climate 

that are either unprofitable or infeasible for a one-time un- 

known weather shock. However, before agents can adapt, 

they first must form a belief about the extent to which 

the climate is changing, if at all. This paper suggests that 

agents, at least those participating in weather markets, 

have been actively updating their beliefs about the extent 

and geography of warming. 

Our paper adds to several strands of literature. The first 

examines the impact of weather fluctuations and climate 

change on the corporate sector and financial markets. Cor- 

porate earnings of several economic sectors are sensitive to 

temperature fluctuations ( Addoum et al., 2020 ), and under- 

standing the extent to which financial markets are pricing 

in climate change risks has implications for financial stabil- 

ity ( Carney, 2015 ). Some papers find that the stock market 

underreacts to the impact of predictable climatic trends on 

firms’ profitability and valuation ( Hong et al., 2019 ), while 

others show that real estate market and municipal bonds 

do price in sea level rise ( Bernstein et al., 2019 ) and agri- 

cultural land markets capitalize climate change expecta- 

tions ( Severen et al., 2018 ). Weather derivatives can pro- 

vide a useful hedge against such fluctuations as well as a 

direct measure of the market’s expectation of future cli- 

mate. 

Second, studies have emphasized how climate policies 

designed to limit emissions can affect firm profitability. 

Anttila-Hughes (2016) finds that energy company valua- 

tions respond to extreme events that may be evidence of 

climate change. Meng (2017) shows how the stock mar- 

ket incorporates changes in the likelihood of US carbon 

regulation as measured by betting markets. Limiting emis- 

sions may render a fossil fuel company’s marginal or most 

costly reserves worthless if they can no longer be extracted 

( McGlade and Ekins, 2015 ). Thus, expectations about future 

climate policies that are themselves related to observed 

cliamte trends are key to the energy sector’s profitability 

and will be reflected in financial markets. 

Third, another strand of the literature focuses on how 

agents adjust their behavior in response to environmen- 

tal forecasts ( Rosenzweig and Udry, 2014; Neidell, 2009 ). 

Shrader (2020) finds that fishermen update their beliefs 

using El Niño medium-range weather forecasts to make 

optimal fishing decisions. Before El Niño forecasts were 

available, the cost of weather shocks was much higher 

because fisheries could not adapt. On the other hand, 

Burke and Emerick (2016) find that changes in agricultural 

yields in response to observable long-term temperature 

trends are not significantly different from yield changes in 

response to random weather shocks. Some authors have 

modeled how market participants learn about and adapt to 

changing weather conditions. For example, Kala (2019) ex- 

amines how Indian farmers dependent on monsoon pre- 
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2 Due to the illiquidity of the weather market, we cannot guarantee 

that contracts were actually traded on days where the settlement price 

provided by CME does not change. To ensure that only traded prices were 

considered, we sometimes exclude time periods where the settlement 

price never changes, but the results are robust to the inclusion/exclusion 

of these days. 
cipitation update their beliefs. Twitter reactions show that

people become habituated to extreme weather events as

they become more frequent ( Moore et al., 2019 ). 

Similarly, public opinion surveys ask respondents to

self-report their beliefs, which also seem driven by re-

cent weather events, especially extremes. Many studies

have shown that people’s beliefs about climate change

are strongly influenced by recent local weather conditions

( Myers et al., 2013; Deryugina, 2013; Akerlof et al., 2013;

Li et al., 2011; Zaval et al., 2014 ). Observed periods of cool-

ing can translate into climate skepticism ( Kaufmann et al.,

2017 ). It is also possible that agents hold differing private

and public beliefs about climate change, especially if cer-

tain views on climate change are perceived as more expe-

dient. 

What is common across much of the literature on cli-

mate change expectations is that researchers infer climate

beliefs indirectly by backing them out from observed in-

direct actions or by relying on stated responses. We add

to this literature by using a different revealed preference

approach to measure beliefs about climate change by an-

alyzing financial derivatives whose value directly depends

on expected weather. This allows us to observe the evolu-

tion of market expectations on warming by looking at the

price of futures contracts that are linked to future weather

outcomes. 

2. Data 

We first describe the financial data before discussing

the weather and climate data. 

2.1. Financial data 

Weather futures contracts are traded on the CME. The

products were first launched in the fall of 2001 and be-

came fully operational for the first full year in 2002.

Contracts are available for eight geographically distributed

cities across the US over our sample period 2001–2020.

Each city is linked to a specific weather station in the city

at one of the airports. These are Atlanta (ATL), Chicago

O’Hare (ORD), Cincinnati/Northern Kentucky (CVG), Dallas-

Fort Worth (DFW), Las Vegas (LAS), Minneapolis-Saint Paul

(MSP), New York LaGuardia (LGA), and Sacramento (SAC).

The location across the US is displayed in Online Appendix

Fig. A1. In the past more cities had weather markets, but

trading in several cities was halted due to a lack of liq-

uidity, while at the same time new cities like Portland and

Tokyo were launched as recently as 2019. Therefore, we fo-

cus on the eight US cities for which contracts were consis-

tently available through spring 2020. 

The main participants in the weather market are insur-

ance companies and firms seeking to offset weather risk.

For example, an energy company may sell an HDDs con-

tract to mitigate the risk of lower demand for heating oil

due to a mild winter. Likewise, a citrus company may pur-

chase an HDDs contract to mitigate the risk of a winter

freeze. The other market participants are speculators who

take contract positions based on their expectations of fu-

ture weather. More generally, volumes in this market de-

creased in recent years due to the entry of reinsurance
629 
firms offering bespoke weather-based hedging services to 

market participants. 

The final settlement price of the futures contract is 

based on the respective weather station HDDs or CDDs in- 

dex for the month as reported by MDA Federal Information 

Systems, Inc. Each degree day in a contract has a payout 

multiplier of $20. For example, if a customer buys one July 

CDDs contract for 300 CDDs, the cost would be $6,000. If 

the realized cumulative CDDs for the month of July settled 

at 330 degree days, the clearance value would be $6,600, 

and the trader would reap a profit of $600 ($20 times the 

increase of 30 degree days). Trading volume generally in- 

creases in the two weeks prior to the start of a contract 

month, with lower trade volume more than two weeks be- 

fore the start of the contract month. 

The weather contracts are based on cumulative HDDs 

and CDDs in a given month. These are indexed to 65 ◦F 

(18 ◦C), the temperature considered the most comfortable 

for humans, on average, and a common standard for utility 

companies because cooling and heating systems tend to be 

turned on above and below that level, respectively. For ex- 

ample, a mean daily temperature of 85 ◦F would count as 

20 CDDs. These daily degree days are then summed over 

the course of the contract month. 

CDDs measure by how much daily average tempera- 

tures T ad at airport a on day d exceed 65 ◦F and thus re- 

quire cooling, hence the name cooling degree days. The ex- 

act formula to derive CDD am 

for month m is obtained by 

summing over all days d(m ) of the month: 

DD am 

= 

∑ 

d(m ) 

max { T ad − 65 , 0 } . (1) 

Likewise, HDDs measure by how much and for how long 

temperature fall below 65 ◦F and thus require heating. The 

exact formula to derive HDD am 

is 

HDD am 

= 

∑ 

d(m ) 

max { 65 − T ad , 0 } . (2) 

For our baseline analyses, we use end-of-day daily fu- 

tures prices obtained from Bloomberg terminals. Prices are 

carried forward in the absence of market activity. For ex- 

ample, if there is a recorded trade on June 17 at a price 

of 300 CDDs for the July contract, followed by no trade 

on June 18, the Bloomberg data will show a price of 300 

again. Unfortunately, the volume data only include con- 

tracts traded via the exchange and not private over-the- 

counter block trades ( Dorfleitner and Wimmer, 2010 ), 2 and 

it is missing for most days. Some data cleaning was neces- 

sary because of “sticky fingers,” for example, sudden price 

jumps by a factor of 10. The exact adjustments are listed 

in Online Appendix Section A1. 

The raw daily data we downloaded from the Bloomberg 

terminals are displayed in Fig. 1 for the two airports with 

the highest volume in CDDs: LGA and DFW. We pick two 



W. Schlenker and C.A. Taylor Journal of Financial Economics 142 (2021) 627–640 

Fig. 1. Futures prices around maturity The graphs display the time series of futures prices around maturity. Day 0 is the end of the month on which the 

weather derivative is based; for example, day 0 for a June contract is June 30. The top row is for New York LaGuarida airport (LGA), and the bottom row for 

Dallas-Fort Worth (DFW). The left column shows CDDs for July, while the right columns show HDDs for December. Years are color coded as shown in the 

bottom legend. Price series that are flagged for quality issues are shown as dashed lines instead of solid lines. The gray-shaded area shows the period over 

which we average futures prices in our baseline specification to derive market expectations, which is four weeks before the start of the month. Contracts 

for the remaining airports and months are shown in Online Appendix Fig. A2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

representative months: the left column shows CDDs in July,

while the right column shows HDDs contracts for Decem-

ber. Contracts for the remaining airports and months are

shown in Online Appendix Fig. A2. Each graph displays the

annual prices series for roughly two-and-a-half months.

Day 0 is the last day of the month on which the con-

tract is based. Both the end of the month and the begin-

ning of the month are indicated by vertical dashed black

lines. The temporal extent ranges from 70 days prior to

the end of the contract month (roughly 40 days prior to

start of the contract month) to 10 days past the end of the

contract month. Years are color coded from blue (2001) to

red (2020). Prices generally do not move past the end of

the contract month (day 0) as all information has been re-

vealed. Most price volatility occurs one to two weeks prior

to the start of the contract month and within the contract

month. There are limited price changes more than two

weeks before the start of the contract month, as limited

information on weather shocks is revealed that the mar-

ket could incorporate that far out. These flat prices depict

market expectations of the climate before annual weather

shocks are realized. 

The main finding of our paper is clearly visible in the

raw data: looking at futures prices a month before the start

of the contract month (i.e., the left side of each graph), we

see how prices for CDD contracts in the left column are
630 
generally drifting upward over the years (color coded from 

blue to red), indicating an upward shift in the required 

amount of cooling as it gets hotter. By the same token, 

the right column shows prices for HDD contracts drifting 

downward over the years, indicating a downward shift in 

the expected amount of heating required. 

While we do not have reliable volume data for the 

Bloomberg terminal time series, Online Appendix Fig. A3 

displays the fraction of days there has been a price change 

for the two-months period ranging from one month prior 

to the contract month to the contract month itself. It 

shows how the number of day-to-day price changes in- 

crease from 2001 to 2010, a likely indication that trading 

volume is picking up, before declining again until 2020. 

The decrease in volume is the reason that some of the 

original contract cities are no longer offered. 

We contacted the CME and obtained volume data for 

the subset of the contracts shown in Online Appendix 

Fig. A4. Note the reduction in the number of lines repre- 

senting contracts relative to Fig. 1 , our baseline data set 

from Bloomberg. We display volume data for this subset 

in Online Appendix Table A1. Panel A shows volume by 

year. It is increasing from the start of weather derivatives 

in 2002 to 2008, when sales for winter and summer con- 

tracts combined topped US$ 2 billion per year. Volume de- 

clines between 2008 and 2016, before another uptick in ac- 
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3 The score is defined as 1 minus the ratio of the root mean squared er- 

ror in the full weather forecast model relative to the root mean squared 

error of a baseline model that just predicts the average climatology. The 

authors state that “Values greater than 60% indicate useful forecasts, 

while those greater than 80% represent a high degree of accuracy.”
tivity since 2017. Panel B aggregates the volume data by

airport. Volume is highest in both CDDs and HDDs for LGA

with a combined trading value of US$3.9 billion. The sec-

ond largest value for CDDs is for DFW, and for HDDs at

ORD. The smallest value is for Sacramento at US$ 0.2 bil-

lion. The combined traded value over all airports and years

for this subset of the data (and hence a lower bound) ex-

ceeds US$10 billion, a large enough amount to ensure that

the market should efficiently incorporate weather informa-

tion. 

2.2. Weather data 

We pair the futures data with weather data: both

weather station observations at the location associated

with each contract as well as gridded climate model pro-

jections. 

For station data, we obtained the ID of the airport

weather station underlying each contract and downloaded

daily minimum and maximum temperatures from the

National Oceanic and Atmospheric Administration’s FTP

server. We then computed the daily mean by averaging the

minimum and maximum temperature before calculating

the degree days for the 65 ◦F bound as given in Eqs. (1) and

(2) above. 

Climate projections were taken from the Coupled Model

Comparison Project (CMIP) repository, which asks various

modeling groups to simulate changing temperatures under

comparable assumptions. We rely on the 5th round CMIP5

archive where these groups predicted climate trends from

2006 onwards. We obtain daily values from NASA NEX-

GDDP, a data set of 21 models that were spatially down-

scaled to a common 0.5 ◦ grid and select the grid cell in

which the weather station is located. NASA NEX-GDDP has

data for two scenarios. Representative Concentration Path-

way (RCP) 4.5 assumes an additional energy flux of 4.5 W

per meter square. This is a moderate warming scenario in

which greenhouse gas emissions are reduced and radiative

forcing stabilizes such that the global mean temperature

increases by 1.8 ◦C (3.2 ◦F) by 2100. Note there is large spa-

tial heterogeneity, and warming in the US is usually pro-

jected to be higher than the global average by a factor of

roughly two. RCP8.5, on the other hand, simulates major

warming where emissions continue to rise such that there

will be additional radiative forcing of 8.5 W per square

meter resulting in a global mean temperature increase of

3.7 ◦C by 2100. In the short term of our study period

(2001–2020), however, both models give similar projec-

tions. The models are predicted to diverge further toward

the end of the century as carbon emissions accumulate

over time. 

Online Appendix Fig. A5 shows box plots for the num-

ber of CDDs and HDDs by month for the eight cities

with weather futures contracts. The red line displays the

weather station data, and the blue line shows the climate

model data. Both use data from 1950 to 2005, which was

the historical baseline period in the CMIP5 archive. There

is close alignment in the mean values as well variance

around the means in both data sets. Recall that the climate

models predict average temperature over the entire grid,

and hence might differ from the observed temperature at
631 
any given point (i.e., weather station) if there is spatial het- 

erogeneity. For example, a city’s airport located close to a 

mountain might have a different temperature than that of 

the surrounding area when averaged over the entire grid. 

We observe strong seasonality: more CDDs in the sum- 

mer, and more HDDs in the winter. As expected, northerly 

cities (Chicago, Minneapolis, New York) have relatively 

more HDDs and less CDDs, while southerly cities (Atlanta, 

Dallas, Las Vegas) have less HDDs and more CDDs. Across 

the eight cities, there are very few occurrences of HDDs in 

the summer months and CDDs in winter months, which is 

why HDDs futures contracts are not traded in summer and 

CDDs contracts are not traded in winter. 

Online Appendix Fig. A6 plots the price of each weather 

derivative at the end of the contract month against the re- 

alized weather at the underlying weather station. The out- 

put closely follows the 45-degree line, demonstrating that 

the market is active enough to ensure weather outcomes 

are fully priced in by contract close and that there are no 

arbitrage opportunities. 

3. Empirical analysis 

We start by analyzing the timing of when futures 

prices capitalize weather shocks in Section 3.1 . Forecast- 

ing and prediction skill of weather (short term) and 

climate (medium to long term) are closely connected 

( Auffhammer et al., 2013 ). Climate models build on a foun- 

dation of short-term weather dynamics, and the same un- 

derlying physical laws apply to the predictions of both 

weather and climate models. If market participants are ac- 

curately updating their longer-term beliefs based on cli- 

mate warming trends, it would be expected that they 

also accurately update their short-term beliefs based on 

weather forecasts. The long-term trends are examined in 

Section 3.2 . 

3.1. Capitalization of short-term weather shocks 

Weather forecasts are widespread and freely available. 

There has been a sustained improvement in weather fore- 

casting across all prediction ranges over recent decades. 

Bauer et al. (2015) present forecasting skill over time for 

weather anomalies, defined as deviations from the average 

climate; for example, it is 10 ◦F hotter today than what it is 

normally this time of the year. A score of one indicates that 

the forecasting model explains 100% of the year-to-year 

anomaly, while a score of zero implies it cannot explain 

anything more than what is expected from the average 

conditions for the season. 3 A 3-day forecast has improved 

from a skill of 80% in 1981 to 98% in 2014. On the other 

hand, a 10-day forecast (not offered in 1981) increased 

from 30% in 1995 to 45% in 2014. Thus we would expect an 

inverted U-shape in terms of the impact of weather shocks 

on futures prices since long-term forecasts beyond 10 days 
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have quickly diminishing value and since very short-term

forecasts should have already been incorporated into prices

given their certainty, aligning with Dorfleitner and Wim-

mer (2010) who find that weather forecasts only influence

futures prices up to 11 days into the future. After this

point, using the average outcome as prediction is just as

good. As such, anticipated changes in weather around one

week out should have the largest impact on current prices

in an efficient market. 

To test this, we estimate when weather shocks capital-

ize into futures prices for the eight airports in our sam-

ple. In a first step, we remove the seasonality to obtain

weather shocks (anomalies), that is, deviations from the

average value that a rational market participant should ex-

pect. Specifically, we regress daily average temperature T ad

at airport a on day d on a constant αa as well as flex-

ible spline that is a function f of the day of the year. 4

We also include a linear time trend γa in the year y (d) as

the weather might be warming over time. The regression

equation is 

T ad = αa + βa f (d) + γa y (d) + εad . (3)

The estimated seasonality for each airport ̂ βa f (d) is shown

in Online Appendix Fig. A7. Years are color coded to show

the linear trend over time. The annual increase has not

been uniform; for example, Las Vegas warmed faster than

Sacramento as there is a large distance between the red

line (2020) and the blue line (2001). The weather shock

on day d is simply the observed number of degree days

D (T ad ) minus the degree days that would be expected at

the predicted average climate according to the seasonality

regression D 

(̂ T ad 

)
. 5 

In a second step, we then regress the change in futures

prices �p cd for contract c on day d, that is, the difference

between the closing price to that of the previous close,

on lags and leads of daily degree day shocks ̂ �D c[ d+ τ ] =[ 
D (T c[ d+ τ ] ) − D ( ̂ T c[ d+ τ ] ) 

] 
for days that fall within the con-

tract month. 6 

�p cd = αc + 

21 ∑ 

τ= −7 

βτ

[ 
D (T c[ d+ τ ] ) − D ( ̂ T c[ d+ τ ] ) 

] 
+ εcd . (4)
4 To address leap years, we normalize the start of the year on January 

1st to equal zero and the end of the year on December 31st to equal 

one. The five knots of the restricted cubic spline are at 0.05, 0.27, 0.50, 

0.72, and 0.95. This will give us four variables for the phase of the year 

f (d) . We force the seasonality on December 31st to equal January 1st to 

guarantee continuity by running a constraint regression. 
5 While degree days are a nonlinear transformation when temperatures 

cross the truncation point at 65 ◦F, the truncation is rarely observed; that 

is average daily temperatures are generally above 65 ◦F in the summer and 

below 65 ◦F in the winter. See Online Appendix Fig. A5 that shows there 

are very few HDDs in the summer and CDDs in the winter. Expected de- 

gree days are close to degree days at the expected temperature. We ob- 

tain similar results whether we fit the seasonality separately for HDDs 

and CDDs or jointly for average temperature. We focus on the latter to 

estimate one unique seasonality rather than two separate regressions for 

summer and winter. 
6 A contract c specifies how many degree days will be observed at air- 

port a in month m of year y, for example, CDDs in June 2015 at LaGuardia 

airport. For a June contract, the weather shocks for days d + τ that are 

outside the month of June are set to zero as the price of a June contract 

is solely based on weather in June. 
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One particularity about this regression is that while tem- 

perature data is available every day, prices are only avail- 

able on trading days. As a result, the coefficient β1 is for 

the sum of all weather shocks after the previous close and 

today’s weather. All other βτ use the weather on a sin- 

gle day, which is τ − 1 days past the current close for 

leads (τ > 0 ) and τ days before the previous close for lags 

(τ < 0) . 7 The coefficient β0 is normalized to be zero. 

In line with the discussion on forecasting skill, future 

weather shocks should be capitalized into prices when 

weather forecasts can predict them, so we expect ̂ βτ > 

0 for the next two weeks τ ∈ [1 , 14] . After that point, 

weather forecasts become unreliable and not better than 

the average climate ( Campbell and Diebold, 2005 ). Past 

weather is already known to market participants and 

hence the ̂ βτ should be zero for τ < 0 . 

The left panel of Fig. 2 shows individual coefficient es- 

timates ̂ βτ with the expected hump-shaped pattern. The 

black line shows the point estimates with the 95% con- 

fidence band added in gray. As expected, past weather 

shocks have no effect on futures prices, while coefficients 

for the next two weeks are generally positive as weather 

shocks get anticipated by the market and priced in prior 

to realization. Beyond day τ = 14 , the coefficients become 

insignificant again as weather forecasts beyond this time 

period are generally not better than the average climatol- 

ogy for the location. The right panel of Fig. 2 makes this 

point more visible by plotting the cumulative sum of co- 

efficients relative to τ = 0 ; that is 
∑ τ

k =1 ̂
 βk for τ > 0 and ∑ −1 

k = τ
̂ βk for τ < 0 . The cumulative sum of coefficients for 

negative τ show no trend and the 95% confidence band in- 

cludes zero. On the contrary, the line increases from 0 to 

1 over the next two weeks as 100% of weather shocks get 

capitalized into the futures price. The curve flattens around 

14 days into the future as weather forecasts become unre- 

liable. 

Online Appendix Fig. A8 splits the regression into HDDs 

and CDDs and finds very similar relations. The one ex- 

ception is that the coefficient estimate ̂ β−1 is positive for 

CDDs, which measure required cooling on the previous 

day. This is not surprising as the daily maximum, which 

is crucial for the amount of required cooling, is generally 

observed in the late afternoon after the market closes and 

hence would not get priced in until the next day. 

One can invert the estimated relation to obtain how 

futures prices predict future weather. We can also run 

the opposite regression for illustrative purposes: do price 

changes in the futures market predict future weather 

shocks. In other words, are price changes a reliable 

weather forecast? We run the following inverse regression 

problem: 

τ1 ∑ 

τ= τ0 

[ 
D (T c[ d+ τ ] ) − D ( ̂ T c[ d+ τ ] ) 

] 
= αc + β�p cd + εcd . (5) 
7 For example, if day d is a Monday, β1 includes the sum of the de- 

gree day shocks for Saturday, Sunday, and Monday; β2 is the degree days 

shock on Tuesday; β3 is the degree day shock on Wednesday, etc. On the 

other hand, β−1 is the degree day shock on the previous Friday. 
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Fig. 2. Capitalization of weather shocks This figure displays the results from a distributed lag model. Daily futures price changes �p cd for contract c on 

day d are regressed on 21 leads and 7 lags of weather shocks ̂ �D c[ d+ τ ] , that is, the difference compared to the average climate on day d + τ . The regression 

equation is �p cd = αc + 

∑ 21 
τ= −7 βτ

̂ �D c[ d+ τ ] + εcd and uses 49,019 observations. The left graph shows the estimated coefficient ̂ βτ for the weather shock on 

a particular lead/lag τ . Negative values of τ on the horizontal axis indicate weather occurring on an earlier day (in the past), while positive values depict 

weather at a future date. The right graph shows 
∑ τ

k =1 ̂
 βk , the cumulative sum of coefficients from day 0 onwards for positive values of the horizontal 

axis and 
∑ −1 

k = τ
̂ βk , the cumulative sum of coefficients before day 0 for negative values of the horizontal axis. The regression pools CDD contracts in June–

September and HDD contracts for November–March. The estimated coefficients for leads τ > 1 and lags τ ≤ −1 are on the weather shock for one day, but 

the coefficient shown for τ = 1 is for the sum of shocks from today to the previous close given that futures are not traded every day. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The regression results are shown in Online Appendix Ta-

ble A2. Each entry is from a single regression of the sum

of future weather shocks τ0 − τ1 days into the future on

today’s price change in the weather derivative. Different

rows vary the time period τ0 − τ1 . The first column pools

all airports, and the remaining eight columns run the re-

gression by airport. We find that price changes predict

weather shocks over the next two weeks, especially days

4–11, the sweet spot of weather forecasts, but cannot pre-

dict weather shocks more than two weeks in advance. 8

The coefficient on weather shocks three weeks into the fu-

ture (15–21 days) is not significant. 

3.2. Capitalization of long-term weather trends 

We now turn to our main analysis of market expecta-

tions of climate change. With weather futures, we must

be careful to separate price changes driven by short-term

weather forecasts and those reflecting longer-term market

beliefs on warming. Some shocks are partially forecastable

over the course of months based on oceanic-atmospheric

phenomena like ENSO or the North Atlantic Oscillation

(NAO). Ideally, we would use futures prices quoted well be-

fore the contract’s delivery month. However, for the same

reason that weather is challenging to forecast far in ad-

vance, trading does not pick up until close to the contract

delivery month, and early dated prices may not be repre-

sentative of the market’s true expectation given the illiq-

uidity. 
8 The regression should be considered with caution as the reverse 

regression problem can lead to biased coefficients. In the climate lit- 

erature, the width of tree rings is often taken as a temperature 

proxy for past temperatures before weather stations were available. As 

Auffhammer et al. (2015) point out, weather influences tree rings. Run- 

ning the inverse regression where temperature is regressed on tree rings 

will lead to biased coefficients and predictions with artificially low vari- 

ance. 

633 
Balancing these two tradeoffs, our baseline model uses 

average futures prices p amy of contract c for airport a 

in month m of year y . The average price is taken the 

fourth week (28-22 days) prior to the start of a contract 

month, for example, the average price between June 3, 

and June 9, 2015 for a July 2015 CDDs contract in Atlanta. 

This ensures that prices reflect future expectations and not 

contemporaneous weather as confirmed in the previous 

section. 

3.2.1. Linear time trends 

In the baseline we pool four summer months (June–

September) in the CDDs regression and five winter months 

(November–March) in the HDDs regression. We fit a simple 

linear trend in the year y after including airport-by-month 

fixed effects αam 

, for example, a fixed effect for June con- 

tracts in Atlanta. We cluster the error terms for a particular 

month m as they might be subject to the same common 

weather shock. 

p amy = αam 

+ βy + εamy . (6) 

Table 1 shows the predicted annual change ̂ β in column 

(1a). Panel A shows that, on average, prices increased by 

$2.4 per year for each of the four summer months, June to 

September, or $10 per year for the combined four-month 

period. This annual increase is statistically significant at 

the 1% level. Since our data set spans 20 years, the price 

for a CDD contract increased by roughly $50 since 2001 

for each of the monthly summer contracts. Recall that the 

payout of the weather derivatives has a multiple of 20, so a 

price increase of $50 implies a change in payout by $1,0 0 0 

over our sample period. Panel B shows that the price for 

a HDD contract declined, on average, by $1 per year, or $5 

for the five-month span from November to March. It is sig- 

nificant at the 5% level. 

Columns (b)-(d) replicate an equivalent analysis us- 

ing the weather station and climate model data. The de- 

pendent variable is no longer the futures price p amy but 
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Table 1 

Linear time trends in degree days. 

(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d) 

Panel A: CDDs June–September 

Trend 2.432 ∗∗∗ 2.998 ∗∗∗ 2.286 ∗∗∗ 2.774 ∗∗∗ 2.148 ∗∗∗ 2.676 ∗∗∗ 2.167 ∗∗∗ 2.432 ∗∗∗

(0.160) (0.887) (0.169) (0.174) (0.330) (0.772) (0.173) (0.160) 

Observations 522 522 522 522 222 576 576 522 

Panel B: HDDs November–March 

Trend 1.000 ∗∗ 2.081 1.662 ∗∗∗ 1.854 ∗∗∗ 1.175 ∗∗ 1.677 1.734 ∗∗∗ 1.000 ∗∗

(0.415) (1.723) (0.354) (0.370) (0.573) (1.524) (0.314) (0.415) 

Observations 676 676 676 676 322 760 760 676 

Panel C: HDDs November–March (excluding February in Northeast) 

Trend 1.719 ∗∗∗ 1.856 1.527 ∗∗∗ 1.710 ∗∗∗ 2.224 ∗∗∗ 1.610 1.643 ∗∗∗ 1.719 ∗∗∗

(0.384) (1.731) (0.362) (0.336) (0.478) (1.529) (0.329) (0.384) 

Observations 604 604 604 604 281 684 684 604 

Data Futures Station RCP4.5 RCP8.5 Futures Station RCP4.5 RCP8.5 

Years Common Common Common Common Traded All All All 

This table reports the estimated annual increase/decrease in degree days ̂ β . Each entry is from a separate regression where degree days D amy at airport a 

for month m in year y are regressed on airport-by-month fixed effects as well as a linear time trend: D amy = αam + βy + εamy . Panel A regresses CDDs for 

the summer months June–September, while Panels B and C use HDDs for November–March. Panel C excludes February for the four northeastern airports 

in Online Appendix Fig. A1. The data set ranges from winter 20 01/20 02 through winter 2019/2020. Columns (a) uses the average futures price p amy four 

weeks before the start of each contract month, for example, the average price between May 4, and May 10, for a June contract. Columns (b) uses observed 

station-level data for the month, while columns (c) and (d) use climate model projections in the NASA NEX-GDDP database under the RCP4.5 and RCP8.5 

scenarios for the month. Columns (1a)-(1d) estimate the trends for a consistent set of observations where futures data are available. Columns (2a)-(2d) 

conduct sensitivity checks to the included years. Columns (2a) exclude contracts where the price did not change during the fourth week preceding the 

contract month. Columns (2b)-(2d) include all years even if futures data are not available. Stars indicate significance levels: ∗ 10%, ∗∗ 5%, ∗∗∗ 1%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the number of degree days at the weather station or cli-

mate grid. Columns (1b)-(1d) hold the set of observa-

tions constant and only include months with available fu-

tures price data. Column (1b) uses the observed degree

days for the contract month from the underlying station

data as the dependent variable. The observed trends (an-

nual changes) are larger in magnitude with an increase of

three CDDs per year during the summer and a decrease

of two HDDs during the winter. The standard errors are

much larger given the greater year-to-year swings stem-

ming from random weather fluctuations. As a result, trends

in observed weather are not significantly different from

those anticipated by the futures market as shown in col-

umn (1a). The smaller standard errors for futures prices

relative to the station-level data also suggest that we are

correctly measuring longer-term market expectations and

not just annual weather realizations, which are much nois-

ier. Columns (1c) and (1d) show average trends per month

in the NASA NEX-GDDP data set averaged across the 21 cli-

mate models for the RCP4.5 and RCP8.5 scenarios, respec-

tively. 

While columns (1a)-(1d) intentionally keep the set of

city-year observations constant, columns (2a)-(2d) repli-

cate the analysis with different subsets of the data. First,

to address concerns about market illiquidity, column (2a)

excludes observations where there was no price change

in the week over which prices are averaged, that is, the

fourth week prior to the start of the contract month in

our baseline specification. This exclusion reduces the sam-

ple size by roughly half but results in point estimates of

similar magnitude to those in column (1a). The time trends

are statistically different from zero and not statistically dif-

ferent than the estimates in column (1a). The reduction in
634 
observations in column (2a) can be explained by the fact 

that we are taking average prices over the fourth week 

prior to the start of the contract month, a period when 

limited information about the eventual weather outcome 

is available beyond the climate normals. We hence do not 

expect many price changes, which happen when new in- 

formation gets incorporated. Nevertheless, it is reassuring 

that the time trends are similar whether there is a price 

change (and hence update) or not. Second, to address con- 

cerns about the endogeneity of this market, for example, 

if contracts are traded more in particularly cold or hot 

years as firms realize they need a hedge, columns (2b)- 

(2d) use all available months with weather station and cli- 

mate model data (even if no futures price data existed) and 

again find very similar annual changes to those in columns 

(1b)-(1d). 

So far we have pooled all months of a season as 

well as each airport into a single regression. Online Ap- 

pendix Tables A3 and Table A4 relax this assumption to 

examine heterogeneity by geography and month. Each ta- 

ble presents the pooled results from Panels A and B of 

Table 1 in the top row of the corresponding panel for ref- 

erence. Online Appendix Table A3 allows time trends to 

differ by airport while still pooling all summer or winter 

months, and Online Appendix Table A4 allows time trends 

to differ by month while still pooling all airports. We ob- 

serve some differences by airport; for example, in column 

(1a) the futures market predicts warming in Las Vegas 

above the national average in both winter and summer, 

and below-average warming in Chicago and Sacramento 

in the summer, all at the 1% significance level. All signif- 

icant time trends have the same sign as the national anal- 

ysis, that is, more CDDs in the summer and fewer HDDs 
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Table 2 

Sensitivity of linear trend to when expectations are taken. 

(1) (2) (3) (4) (5) (6) 

Panel A: CDDs June–September 

Trend 2.451 ∗∗∗ 2.428 ∗∗∗ 2.432 ∗∗∗ 2.385 ∗∗∗ 2.431 ∗∗∗ 2.448 ∗∗∗

(0.147) (0.142) (0.160) (0.189) (0.239) (0.314) 

Observations 520 522 522 522 522 522 

Panel B: HDDs November–March 

Trend -0.905 ∗∗ -0.900 ∗∗ -1.000 ∗∗ -1.224 ∗∗∗ -1.356 ∗∗∗ -1.628 ∗∗

(0.408) (0.405) (0.415) (0.431) (0.482) (0.697) 

Observations 672 676 676 676 676 676 

Panel C: HDDs November–March (exl. Feb in NE) 

Trend -1.656 ∗∗∗ -1.642 ∗∗∗ -1.719 ∗∗∗ -1.908 ∗∗∗ -2.077 ∗∗∗ -2.202 ∗∗∗

(0.371) (0.363) (0.384) (0.414) (0.465) (0.727) 

Observations 600 604 604 604 604 604 

Airport FE Yes Yes Yes Yes Yes Yes 

Weeks prior 6 5 4 3 2 1 

This table shows a sensitivity analysis of column (1a) of Table 1 , now column (3), to the time window over which futures prices are averaged to evaluate 

expectations. The last row displays how many weeks prior to the start of the contract month the futures prices are averaged over, ranging from one to six 

weeks. Stars indicate significance levels: ∗ 10%, ∗∗ 5%, ∗∗∗ 1%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 The authors write: “A useful analogy might be drawn at this point 

with the atmosphere-ocean system: in the same way as understanding 

and successfully modeling the El Niño-Southern Oscillation phenomenon 

is of primary importance for the atmosphere-ocean system, understand- 

ing and successfully modeling stratospheric sudden warming events is 
in the winter, although the winter time trends sometimes

become insignificant, especially in the northeastern subset

of airports (CVG, LGA, MSP, ORD). 9 In column (1b), none of

the time trends in weather station data differ significantly

by airport, although they are estimated with more noise

due to the large year-to-year variability. In columns (1c)-

(1d), the climate models show below-average warming in

Sacramento in the RCP4.5 data. In summary, while there

are small differences, there does not seem to be a system-

atic significant difference by airport. 

The story is different when examining heterogeneity

by month in Online Appendix Table A4. Futures prices

show a significant positive annual increase for February

HDDs, suggesting an expectation of colder temperatures.

It is highly significant at the 1% level. This finding is pri-

marily driven by regional heterogeneity. Online Appendix

Fig. A10 shows time trends per month after separating

the eight airports into a northeastern quadrant (CVG, LGA,

MSP, ORD) and the remaining four (ATL, DFW, LAS, SAC)

in the south and southwest. The February cooling trend

(positive increase in HDDs) is only observed for the north-

eastern quadrant in the futures data. Since we are splitting

the sample further, the estimated time trends become less

precisely estimated, but February cooling is neither sup-

ported by recent weather observations nor climate runs in

the CMIP5 archive. All other winter months either show

a significant negative time trend or an insignificant time

trend in HDDs. 

The futures market may be incorporating recent infor-

mation about a shift of the polar vortex that was not avail-

able at the time of CMIP5. Recent studies suggest that

melting ice sheets destabilize the jet stream, leading to

an increased frequency of stable weather patterns bringing

cold arctic air to Europe and North America ( Francis and
9 The winter time trend for Sacramento is also insignificant, although it 

is less traded than other contracts and the summer time trend was also 

closer to zero. 
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Vavrus, 2015 ). (Zhang et al., 2016, p.1094) conclude that 

the “Arctic polar vortex shifted persistently towards the 

Eurasian continent and away from North America in Febru- 

ary over the past three decades. [... ] Our analysis reveals 

that the vortex shift induces cooling over some parts of the 

Eurasian continent and North America which partly offsets 

the tropospheric climate warming there in the past three 

decades.” Kim et al. (2014 , p.1) note that “the mechanism 

that links sea-ice loss to cold winters remains a subject of 

debate,” so it remains an active topic of research. 

One crucial paper for our analysis is Charlton and 

Polvani (2007) , who more generally examine a phe- 

nomenon called stratospheric sudden warming (SSW) and 

its relation to the troposphere, specifically the polar vor- 

tex. The authors note that “given the prominent role of 

SSW events, it is somewhat surprising that relatively few 

attempts have been made to establish a comprehensive cli- 

matology of SSWs. [p. 450]” The authors proceed to do so 

in two accompanying articles in the Journal of Climate in 

2007 and operationalize how SSW events in January and 

February in the stratosphere can influence weather in the 

troposphere. 10 A fully rational market would incorporate 

this new finding, an issue we return to in the next section 

where we present nonlinear trends and find an uptick in 

the 20 07–20 08 winter immediately following publication. 

Before we do so, Panel C row of Table 1 replicates the 

analysis for HDDs from Panel B after excluding February 
of primary importance for the stratosphere-troposphere system. [p.450]”

ENSO similarly allows a weather forecast with a lead time of more than 

four weeks; that is the futures data might be picking up relevant infor- 

mation of how a year’s weather is shifting. Online Appendix Section A2 

finds that oceanic indices like El Niño are not a major factor of the ob- 

served warming trend. 
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Fig. 3. Nonlinear time trends in futures prices and weather This figure estimates nonlinear time trends using restricted cubic splines in time (knots at 

20 03, 20 08, 2013, and 2018) on the residuals, which are obtained by subtracting airport-by-month fixed effects ̂ βam among the eight airports and four 

summer months (June–September) in the left graph or eight airports and five winter months (November–March) in the right graph, excluding February for 

the four northeastern airports. The green line uses futures prices four weeks before the start of the contract month. The red line shows the results for the 

observed weather station data. The blue lines use climate model output from NASA NEX-GDDP. In each case we subtract the average for the airport and 

month (i.e., airport-by-month fixed effect). The horizontal axis reports the year a season ends, winter 20 01/20 02 is recorded as 2002. The 95% confidence 

bands are added as shaded areas. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11 The spline knots are at 20 03, 20 08, 2013 and 2018. Online Appendix 

Fig. A11 presents locally weighted lowess regression of the same resid- 

uals. Specifically, we apply STATA’s lowess command to the annual av- 

erage of the residuals. We first average the monthly residuals per year 

since a locally weighted regression with several observations in the same 

year would need to arbitrarily pick which of the month to include in the 

local average. The point estimates are similar to the spline regression, 

which we use going forward because they allow us to construct confi- 

dence bands. 
contracts for the four northeastern airports. While the ex-

clusion has very limited effect on the estimated annual de-

crease in monthly HDDs for the regression using weather

station data or climate model outputs in columns (b)-(d),

it changes the coefficient on the annual decrease in futures

prices in column (a), making it much more closely aligned

with the annual changes in observed weather and climate

model output. 

We present a final sensitivity check of the observed fu-

tures price trends to the window over which the prices are

averaged in Table 2 . Our baseline uses prices that are av-

eraged over the fourth week prior to the start of the con-

tract month. Prices at this point are mostly stable as shown

in Fig. 1 because new information on the annual shocks

are not yet available. The six columns in Table 2 repli-

cates the analysis by averaging anywhere between one to

six weeks prior to the start date of the contract month.

The time trend on CDDs in Panel A is completely insen-

sitive to the chosen time window and very stable around

an additional 2.4 CDDs per year for each of the summer

months. The time trend on HDDs in Panel B and Panel

C are very similar whether we average prices six, five, or

four weeks in advance of the start of the contract month.

There is a slight uptick as we get closer to the start date of

the contract month, suggesting an even larger annual de-

cline, although the difference is not significant given the

larger standard errors. The overall robustness of the rela-

tion across the time periods supports the idea that mar-

kets expected a consistent increase in the need for cooling

in the summer and a decrease in the need for heating in

the winter. 

3.2.2. Nonlinear trends 

Fig. 3 relaxes the linearity assumption of the time trend

and instead plots a semiparametric regression of the resid-

uals after removing airport-by-month fixed effects αam 

in

Eq. (6) to account for different average monthly climates

(i.e., June in Atlanta is hotter than June in Minneapolis).

We use restricted cubic splines to allow for more flexi-
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ble trends. 11 The lines in green, red, blue, and cyan cor- 

respond to the variables listed in columns (1a)-(1d) of 

Table 1 (Panel A for CDDs and Panel C for HDDs), respec- 

tively, that is, residuals from the weather futures prices, 

weather station outcomes, and climate projections under 

RCP4.5 and RCP8.5. 

The futures prices and climate model output show a 

steady upward trend in CDDs and a downward trend in 

HDDs. The trends on the weather station data (red lines) 

are less smooth for both cooling and heating, partly be- 

cause of the noisiness inherent in year-to-year swings in 

weather realizations that are larger than predicted average 

outcomes in the other data sets. For example, the winter 

2017/2018 was especially warm, leading to a sharp drop in 

HDDs for that year. There also seems to be a short-term 

plateau in the observed warming trend around 2010, but 

the long-term effects over the 20-year period are similar 

across data sets. For both cooling and heating, the green 

lines showing futures price trends closely follow the cyan 

and blue lines of the climate model projections and not the 

red lines. This suggests that beliefs are not myopically up- 

dated based on recently observed weather but are rather 

tied to the smooth warming trend projected by climate 

models and observed in longer-term station data. 

In the previous section we found a statistically signifi- 

cant cooling trend in February futures prices for the four 

northeastern airports. To show this, we again relax the 

linearity assumption in Fig. 4 and plot the residuals of 

February prices four weeks before the start of the con- 

tract month after removing airport fixed effects. We then 

add a trend line using the same restricted cubic splines in 
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Fig. 4. Nonlinear time trend in February futures at northeastern airports This figure estimates nonlinear time trends using restricted cubic splines in time 

(knots at 20 03, 20 08, 2013, and 2018) on the residuals of February contracts among the four airports in the northeastern quadrant in Online Appendix 

Fig. A1. Residuals are obtained after removing airport fixed effects and are displayed for the four airports. The solid line uses futures prices four weeks 

before the start of the contract month. The 95% confidence band is added as shaded area. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 We use all monthly observations from November 2001-March 2020 in 

the station and climate model data, even if the futures data is not avail- 

able. Since the weather station data are more variable (it measures actual 

outcomes versus averages among climate models), we include as many 

observations as possible in order not to unfairly penalize the station-level 

data by making the time trend more variable. 
time as well as the 95% confidence band. We observe an

almost linear uptick in residuals between 2007 and 2012,

which is consistent with the publication of Charlton and

Polvani (2007) a study in the premier climatology journal

that presents a novel comprehensive climatology to predict

the “polar vortex.” While we cannot be sure of when the

market became aware of various findings in the scientific

literature, it is striking that starting around 2007, February

becomes the only month where the futures markets pre-

dicts a cooling in the short term that eventually diminishes

as anthropogenic warming becomes dominant. 

3.2.3. Comparing spatial and temporal heterogeneity 

The previous section has shown that the market in-

corporated a unique subseasonal cooling dynamic for part

of the US. We extend this type of analysis further by ex-

amining whether the observed heterogeneity in the time

trend mostly aligns with climate model output or observed

station-level trends. This allows us to contrast whether fu-

tures markets reflect knowledge about climate model pro-

jections or simply assume the continuation of observed

time trends. While all data sets show similar average time

trends, the spatial and temporal heterogeneity varies. 

Intuitively, if traders rely mostly on recent observed

trends, we would expect that airports and/or contract

months that show larger than average warming in the

station-level data between November 2001 and March

2020 would also have larger than average annual changes

in futures prices as well. On the other hand, if market

participants mostly respond to climate model projections,

we would observe the distribution of time trends to more

closely align with what is observed in the climate model

output. 
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To test this, we estimate time trends βam 

that are air- 

port and month specific instead of the common trend β
used in Eq. (6) : 

p amy = αam 

+ βam 

y + εamy . (7) 

We run this model with futures price data to obtain 

̂ 

β f 
am 

, 

observed weather station data to obtain 

̂ βs 
am 

, and the cli- 

mate model output under RCP4.5 to obtain 

̂ β4 . 5 
am 

and RCP8.5 

to obtain 

̂ β8 . 5 
am 

). 12 In a second step we then regress the es- 

timated time trend in the futures data on the other trends: 

̂ 

β f 
am 

= α0 + αs ̂
 βs 

am 

+ α4 . 5 ̂
 β4 . 5 

am 

+ α8 . 5 ̂
 β8 . 5 

am 

+ εam 

. (8) 

If market participants are just incorporating the average for 

each airport-by-month, we would only expect the constant 

α0 to be significant, as it picks up the common average. On 

the other hand, if futures prices incorporate the observed 

heterogeneity in time trends found in the station-level data 

or climate model output, we would expect αs , α4 . 5 , or α8 . 5 

to be significant. 

It should be noted that it is much harder to predict spa- 

tial heterogeneity in warming than it is to predict average 

trends because of all the localized feedback loops of the 

climate system. The average trend is given by a simple bal- 

ance of energy calculation. For example, if one increases 

the burner under a pot of water, the average temperature 

will increase, but it is much harder to predict where this 
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Table 3 

Comparing spatial and temporal heterogeneity in trends. 

(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d) 

Panel A: All years 

Trend at weather station 0.251 ∗∗ 0.135 0.302 ∗∗∗ 0.137 

(0.101) (0.113) (0.100) (0.105) 

Trend in NEX-GDDP: RCP4.5 0.628 ∗∗∗ 0.432 0.840 ∗∗∗ 0.627 

(0.155) (0.474) (0.137) (0.426) 

Trend in NEX-GDDP: RCP8.5 0.501 ∗∗∗ 0.066 0.666 ∗∗∗ 0.080 

(0.126) (0.392) (0.120) (0.376) 

Panel B: Years 2006–2020 

Trend at weather station -0.056 -0.130 ∗∗ -0.014 -0.107 ∗

(0.054) (0.058) (0.065) (0.063) 

Trend in NEX-GDDP: RCP4.5 0.175 0.098 0.422 0.262 

(0.260) (0.295) (0.318) (0.323) 

Trend in NEX-GDDP: RCP8.5 0.346 ∗∗ 0.457 ∗∗∗ 0.400 ∗∗ 0.415 ∗∗∗

(0.167) (0.166) (0.172) (0.153) 

Panel C: Years 2011–2020 

Trend at weather station -0.037 -0.046 -0.062 -0.062 

(0.049) (0.046) (0.056) (0.052) 

Trend in NEX-GDDP: RCP4.5 0.158 -0.034 0.159 -0.033 

(0.192) (0.186) (0.197) (0.188) 

Trend in NEX-GDDP: RCP8.5 0.716 ∗∗∗ 0.730 ∗∗∗ 0.733 ∗∗∗ 0.737 ∗∗∗

(0.155) (0.162) (0.166) (0.168) 

Observations 72 72 72 72 68 68 68 68 

This table examines spatial and temporal heterogeneity in various data sources. A separate linear time trend ̂ βam is fit for each month and airport: 

D amy = αam + βam y + εamy . We then regress the trend in the futures data 
̂ 

β f 
am on the trend in the weather station data ̂ βs 

am as well as the trends in the 

climate model output ̂ β4 . 5 
am , ̂

 β8 . 5 
am by NASA NEX-GDDP RCP4.5 and RCP8.5, respectively. Columns (1a)-(1d) include all months (November–March for HDDs 

and June–September for CDDs). Columns (2a)-(2d) exclude February for the four northeastern airports. Panels vary the years over which the time trends 

are estimated. Stars indicate significance levels: ∗ 10%, ∗∗ 5%, ∗∗∗ 1%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

extra energy will show up and how it will spread across

the volume of water. Similarly, changes in wind patterns

might lead to higher warming in some areas while reduc-

ing it in others ( Hsiang and Kopp, 2018 ). February cooling

due to the polar vortex over eastern North America goes

hand-in-hand with higher-than-expected warming in the

Arctic. Cooling in East Coast cities does not refute that the

globe is warming, which it is in total, but rather reflects

the uncertainty on where the extra energy manifests as jet

streams shift. 

The results are given in Table 3 . Columns (a)-(c) include

each estimated time trend in the weather/climate data

one at a time, while columns (d) jointly include all three.

Columns (1a)-(1d) include all 72 airport-month combina-

tions of the 8 airports and 9 months: June–September for

CDDs in the summer and November–March for HDDs in

the winter. Columns (2a)-(2d) exclude February for the

four northeastern airports for a total of 68 observations. 

Panel A pools all observations from November 2001–

March 2020 in the estimation of the βam 

. The coefficient

on the climate model output in columns (b) and (c) is

consistently larger than for the heterogeneity actually ob-

served in the weather station data over the same pe-

riod. When we include all three in column (d), they are

no longer individually significant given the high degree

of multicollinearity, but climate model output under the

RCP4.5 scenario has the largest point estimate. 

Panel B and Panel C limit the observations to 2006–

2020 and 2011–2020, respectively, in the calculation of the

trends βam 

. The reason is twofold: first, climate models in
the CMIP 5 archive used 1950–2005 as the baseline to cal- 
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ibrate their models. By limiting the data to a period past 

2005, the model should predict completely out of sam- 

ple. Note, however, that we are using the actual observed 

climate trends from the weather station data ̂ βs 
am 

, so the 

climate model would simply incorporate some of the in- 

formation that is in the station-level data. Since it took 

climate modeling groups several years to run the models 

before they were posted, Panel C further limits the time 

window to after 2010. Second, the pace of global warm- 

ing slowed between 1998–2012 and then picked up again 

around 2012. 

Both Panel B and C show that the spatial heterogeneity 

in trends in the futures data is better aligned with the het- 

erogeneity in the climate model output rather than with 

the trend at the underlying weather station. For this subin- 

terval of accelerated warming, the heterogeneity found in 

RCP8.5 is a better predictor than RCP4.5. On the one hand, 

this is not surprising as the early 20 0 0s mostly relied on 

climate projections from the Intergovernmental Panel on 

Climate Change (IPCC) fourth assessment report that did 

not include RCP8.5. On the other hand, as we have argued 

above, the futures market was quick to pick up on scien- 

tific advances related to the polar vortex. Since the IPCC 

reports are based on published studies, much of the under- 

lying theory might have also been available to interested 

parties in the early 20 0 0s. We lack a credible proxy for 

when information is received by the market, so we cannot 

directly test when market participants update their view 

on which climate model to follow. 

It is noteworthy that across all the time periods con- 

sidered in Panels A-C, the heterogeneity in the futures 
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Fig. 5. Predicted change in degree days in climate models This figure shows nonparametric time trends by airport averaged over the 21 climate models in 

the NASA NEX-GDDP database. The y-axis gives the predicted average change in monthly CDDs or HDDs. The top row shows the results for the change in 

monthly CDDs in the summer (June–September) and the bottom row for the change in monthly HDDs in the winter (November–March). The left column 

uses the predictions under the RCP4.5 scenario, while the right column uses RCP8.5. Specifically, a nonparametric lowess regression is fit to the annual 

average of the monthly residuals after removing airport-by-month fixed effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

price trends more closely mirror climate models than the

eventual weather realizations. Combined with the uptick in

February futures prices that is not supported by station-

level observations, we conclude that market participants

are using climate models, or some related source of infor-

mation, to update their beliefs on future weather rather

than just projecting forward historical trends. Moreover,

as Online Appendix Section A3 shows, previous warm-

ing trends in the early part of the 20th century have

plateaued, and simply forecasting that past trends will con-

tinue rather than using climate model projections would

be a risky endeavor for investors. 

Warming trends are predicted to diverge further out

in the future as shown in Fig. 5 , which displays climate

model output through 2100. We again remove airport-by-

month fixed effects and then average the residuals over the

four summer months (June–September) or the five win-

ter months (November–March). The top row again shows

CDDs, while the bottom row shows HDDs. The left column

shows nonparametric warming paths under the RCP4.5

scenario, while the right column uses RCP8.5. For example,

the reduction in HDDs in Minneapolis under the RCP8.5

scenario (bottom right graph) is almost twice as large as

for Atlanta. 

4. Conclusion 

To the best of our knowledge, this paper is the first to

use a direct measure of climate change expectations as de-

rived from weather-based futures contracts. The evidence

shows that financial markets incorporate warming trends
639 
that are consistent with climate model projections. We find 

the market has been accurately pricing in a warming cli- 

mate and that this began occurring at least since the early 

20 0 0s when the weather futures markets were formed. 

The market also seems to price in recent scientific find- 

ings like the polar vortex that can lead to February cooling 

over the eastern US, an effect neither present in the CMIP5 

archive nor detectable in recent weather station observa- 

tions. 

Our findings have direct implications for firms and fi- 

nancial markets. Recent studies have highlighted how the 

valuations of companies and entire industries are sensi- 

tive to weather fluctuations and climate change risk. Since 

efficient and profit-maximizing behavior requires an ac- 

curate assessment of predicted warming, weather mar- 

kets can provide companies with pertinent information 

on future weather and climate trends as well as a hedge 

against potential lost profit. Relatedly, our findings may 

have relevance to climate adaptation. Adaptation requires 

that agents form beliefs about the extent to which the cli- 

mate is changing. This paper suggests that agents, at least 

those participating in weather markets, have been updat- 

ing their beliefs that summers are getting hotter and win- 

ters colder. 

There are policy implications of our findings, especially 

since some politicians still question the existence and ex- 

tent of climate change. The observed annual trend in fu- 

tures prices shows that the supposedly efficient financial 

markets agree that the climate is warming. To date, cli- 

mate models have been very accurate in predicting warm- 

ing trends observed across the US. While we cannot be 
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sure that the market believes warming to be human in-

duced, per se, anyone doubting climate change can attempt

to profit from that belief by betting against the observed

warming trend. The price of a summer month CDD con-

tract, for example, has increased by roughly $50 over the

20-year sample period. Since the payout of the financial

derivative has a multiplier of 20, this implies an additional

$1,0 0 0 in value is on the table per contract. When money

is on the line, it is hard to find parties willing to bet

against the scientific consensus. 
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